{"title":"Group Tests for High-dimensional Failure Time Data with the Additive Hazards Models.","authors":"Dandan Jiang, Jianguo Sun","doi":"10.1515/ijb-2016-0085","DOIUrl":null,"url":null,"abstract":"<p><p>Statistical analysis of high-dimensional data has been attracting more and more attention due to the abundance of such data in various fields such as genetic studies or genomics and the existence of many interesting topics. Among them, one is the identification of a gene or genes that have significant effects on the occurrence of or are significantly related to a certain disease. In this paper, we will discuss such a problem that can be formulated as a group test or testing a group of variables or coefficients when one faces right-censored failure time response variable. For the problem, we develop a corrected variance reduced partial profiling (CVRPP) linear regression model and a likelihood ratio test procedure when the failure time of interest follows the additive hazards model. The numerical study suggests that the proposed method works well in practical situations and gives better performance than the existing one. An illustrative example is provided.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"13 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2017-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2016-0085","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2016-0085","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Statistical analysis of high-dimensional data has been attracting more and more attention due to the abundance of such data in various fields such as genetic studies or genomics and the existence of many interesting topics. Among them, one is the identification of a gene or genes that have significant effects on the occurrence of or are significantly related to a certain disease. In this paper, we will discuss such a problem that can be formulated as a group test or testing a group of variables or coefficients when one faces right-censored failure time response variable. For the problem, we develop a corrected variance reduced partial profiling (CVRPP) linear regression model and a likelihood ratio test procedure when the failure time of interest follows the additive hazards model. The numerical study suggests that the proposed method works well in practical situations and gives better performance than the existing one. An illustrative example is provided.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.