Xin-Xing Gu, Stanley A Plotkin, Kathryn M Edwards, Alessandro Sette, Kingston H G Mills, Ofer Levy, Andrea J Sant, Annie Mo, William Alexander, Kristina T Lu, Christopher E Taylor
{"title":"Waning Immunity and Microbial Vaccines-Workshop of the National Institute of Allergy and Infectious Diseases.","authors":"Xin-Xing Gu, Stanley A Plotkin, Kathryn M Edwards, Alessandro Sette, Kingston H G Mills, Ofer Levy, Andrea J Sant, Annie Mo, William Alexander, Kristina T Lu, Christopher E Taylor","doi":"10.1128/CVI.00034-17","DOIUrl":null,"url":null,"abstract":"<p><p>Since the middle of the 20th century, vaccines have made a significant public health impact by controlling infectious diseases globally. Although long-term protection has been achieved with some vaccines, immunity wanes over time with others, resulting in outbreaks or epidemics of infectious diseases. Long-term protection against infectious agents that have a complex life cycle and antigenic variation remains a key challenge. Novel strategies to characterize the short- and long-term immune responses to vaccines and to induce immune responses that mimic natural infection have recently emerged. New technologies and approaches in vaccinology, such as adjuvants, delivery systems, and antigen formulations, have the potential to elicit more durable protection and fewer adverse reactions; together with <i>in vitro</i> systems, these technologies have the capacity to model and accelerate vaccine development. The National Institute of Allergy and Infectious Diseases (NIAID) held a workshop on 19 September 2016 that focused on waning immunity to selected vaccines (for <i>Bordetella pertussis</i>, <i>Salmonella enterica</i> serovar Typhi, <i>Neisseria meningitidis</i>, influenza, mumps, and malaria), with an emphasis on identifying knowledge gaps, future research needs, and how this information can inform development of more effective vaccines for infectious diseases.</p>","PeriodicalId":10271,"journal":{"name":"Clinical and Vaccine Immunology","volume":"24 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1128/CVI.00034-17","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Vaccine Immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/CVI.00034-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/7/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 34
Abstract
Since the middle of the 20th century, vaccines have made a significant public health impact by controlling infectious diseases globally. Although long-term protection has been achieved with some vaccines, immunity wanes over time with others, resulting in outbreaks or epidemics of infectious diseases. Long-term protection against infectious agents that have a complex life cycle and antigenic variation remains a key challenge. Novel strategies to characterize the short- and long-term immune responses to vaccines and to induce immune responses that mimic natural infection have recently emerged. New technologies and approaches in vaccinology, such as adjuvants, delivery systems, and antigen formulations, have the potential to elicit more durable protection and fewer adverse reactions; together with in vitro systems, these technologies have the capacity to model and accelerate vaccine development. The National Institute of Allergy and Infectious Diseases (NIAID) held a workshop on 19 September 2016 that focused on waning immunity to selected vaccines (for Bordetella pertussis, Salmonella enterica serovar Typhi, Neisseria meningitidis, influenza, mumps, and malaria), with an emphasis on identifying knowledge gaps, future research needs, and how this information can inform development of more effective vaccines for infectious diseases.
期刊介绍:
Cessation. First launched as Clinical and Diagnostic Laboratory Immunology (CDLI) in 1994, CVI published articles that enhanced the understanding of the immune response in health and disease and after vaccination by showcasing discoveries in clinical, laboratory, and vaccine immunology. CVI was committed to advancing all aspects of vaccine research and immunization, including discovery of new vaccine antigens and vaccine design, development and evaluation of vaccines in animal models and in humans, characterization of immune responses and mechanisms of vaccine action, controlled challenge studies to assess vaccine efficacy, study of vaccine vectors, adjuvants, and immunomodulators, immune correlates of protection, and clinical trials.