Quantitative assessment of hand motor function in cervical spinal disorder patients using target tracking tests.

Q Medicine
Sunghoon I Lee, Alex Huang, Bobak Mortazavi, Charles Li, Haydn A Hoffman, Jordan Garst, Derek S Lu, Ruth Getachew, Marie Espinal, Mehrdad Razaghy, Nima Ghalehsari, Brian H Paak, Amir A Ghavam, Marwa Afridi, Arsha Ostowari, Hassan Ghasemzadeh, Daniel C Lu, Majid Sarrafzadeh
{"title":"Quantitative assessment of hand motor function in cervical spinal disorder patients using target tracking tests.","authors":"Sunghoon I Lee,&nbsp;Alex Huang,&nbsp;Bobak Mortazavi,&nbsp;Charles Li,&nbsp;Haydn A Hoffman,&nbsp;Jordan Garst,&nbsp;Derek S Lu,&nbsp;Ruth Getachew,&nbsp;Marie Espinal,&nbsp;Mehrdad Razaghy,&nbsp;Nima Ghalehsari,&nbsp;Brian H Paak,&nbsp;Amir A Ghavam,&nbsp;Marwa Afridi,&nbsp;Arsha Ostowari,&nbsp;Hassan Ghasemzadeh,&nbsp;Daniel C Lu,&nbsp;Majid Sarrafzadeh","doi":"10.1682/JRRD.2014.12.0319","DOIUrl":null,"url":null,"abstract":"<p><p>Cervical spondylotic myelopathy (CSM) is a chronic spinal disorder in the neck region. Its prevalence is growing rapidly in developed nations, creating a need for an objective assessment tool. This article introduces a system for quantifying hand motor function using a handgrip device and target tracking test. In those with CSM, hand motor impairment often interferes with essential daily activities. The analytic method applied machine learning techniques to investigate the efficacy of the system in (1) detecting the presence of impairments in hand motor function, (2) estimating the perceived motor deficits of CSM patients using the Oswestry Disability Index (ODI), and (3) detecting changes in physical condition after surgery, all of which were performed while ensuring test-retest reliability. The results based on a pilot data set collected from 30 patients with CSM and 30 nondisabled control subjects produced a c-statistic of 0.89 for the detection of impairments, Pearson r of 0.76 with p < 0.001 for the estimation of ODI, and a c-statistic of 0.82 for responsiveness. These results validate the use of the presented system as a means to provide objective and accurate assessment of the level of impairment and surgical outcomes.</p>","PeriodicalId":50065,"journal":{"name":"Journal of Rehabilitation Research and Development","volume":"53 6","pages":"1007-1022"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1682/JRRD.2014.12.0319","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rehabilitation Research and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1682/JRRD.2014.12.0319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 11

Abstract

Cervical spondylotic myelopathy (CSM) is a chronic spinal disorder in the neck region. Its prevalence is growing rapidly in developed nations, creating a need for an objective assessment tool. This article introduces a system for quantifying hand motor function using a handgrip device and target tracking test. In those with CSM, hand motor impairment often interferes with essential daily activities. The analytic method applied machine learning techniques to investigate the efficacy of the system in (1) detecting the presence of impairments in hand motor function, (2) estimating the perceived motor deficits of CSM patients using the Oswestry Disability Index (ODI), and (3) detecting changes in physical condition after surgery, all of which were performed while ensuring test-retest reliability. The results based on a pilot data set collected from 30 patients with CSM and 30 nondisabled control subjects produced a c-statistic of 0.89 for the detection of impairments, Pearson r of 0.76 with p < 0.001 for the estimation of ODI, and a c-statistic of 0.82 for responsiveness. These results validate the use of the presented system as a means to provide objective and accurate assessment of the level of impairment and surgical outcomes.

用目标跟踪试验定量评估颈椎疾患患者的手部运动功能。
脊髓型颈椎病(CSM)是一种发生在颈部的慢性脊柱疾病。它在发达国家的流行率正在迅速增长,因此需要一种客观的评估工具。本文介绍了一种利用手持装置和目标跟踪测试对手部运动功能进行量化的系统。在CSM患者中,手部运动障碍经常干扰基本的日常活动。分析方法应用机器学习技术来研究该系统在以下方面的有效性:(1)检测手部运动功能障碍的存在,(2)使用Oswestry残疾指数(ODI)估计CSM患者的感知运动缺陷,(3)检测手术后身体状况的变化,所有这些都是在确保重测信度的情况下进行的。基于从30名CSM患者和30名非残疾对照组中收集的试点数据集,结果产生了检测损伤的c统计量为0.89,估计ODI的Pearson r为0.76 (p < 0.001),反应性的c统计量为0.82。这些结果验证了所提出的系统作为一种提供客观和准确的评估损伤水平和手术结果的手段的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.64
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信