{"title":"Binary Markov Random Fields and interpretable mass spectra discrimination.","authors":"Ao Kong, Robert Azencott","doi":"10.1515/sagmb-2016-0019","DOIUrl":null,"url":null,"abstract":"<p><p>For mass spectra acquired from cancer patients by MALDI or SELDI techniques, automated discrimination between cancer types or stages has often been implemented by machine learning algorithms. Nevertheless, these techniques typically lack interpretability in terms of biomarkers. In this paper, we propose a new mass spectra discrimination algorithm by parameterized Markov Random Fields to automatically generate interpretable classifiers with small groups of scored biomarkers. A dataset of 238 MALDI colorectal mass spectra and two datasets of 216 and 253 SELDI ovarian mass spectra respectively were used to test our approach. The results show that our approach reaches accuracies of 81% to 100% to discriminate between patients from different colorectal and ovarian cancer stages, and performs as well or better than previous studies on similar datasets. Moreover, our approach enables efficient planar-displays to visualize mass spectra discrimination and has good asymptotic performance for large datasets. Thus, our classifiers should facilitate the choice and planning of further experiments for biological interpretation of cancer discriminating signatures. In our experiments, the number of mass spectra for each colorectal cancer stage is roughly half of that for each ovarian cancer stage, so that we reach lower discrimination accuracy for colorectal cancer than for ovarian cancer.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2016-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For mass spectra acquired from cancer patients by MALDI or SELDI techniques, automated discrimination between cancer types or stages has often been implemented by machine learning algorithms. Nevertheless, these techniques typically lack interpretability in terms of biomarkers. In this paper, we propose a new mass spectra discrimination algorithm by parameterized Markov Random Fields to automatically generate interpretable classifiers with small groups of scored biomarkers. A dataset of 238 MALDI colorectal mass spectra and two datasets of 216 and 253 SELDI ovarian mass spectra respectively were used to test our approach. The results show that our approach reaches accuracies of 81% to 100% to discriminate between patients from different colorectal and ovarian cancer stages, and performs as well or better than previous studies on similar datasets. Moreover, our approach enables efficient planar-displays to visualize mass spectra discrimination and has good asymptotic performance for large datasets. Thus, our classifiers should facilitate the choice and planning of further experiments for biological interpretation of cancer discriminating signatures. In our experiments, the number of mass spectra for each colorectal cancer stage is roughly half of that for each ovarian cancer stage, so that we reach lower discrimination accuracy for colorectal cancer than for ovarian cancer.