prepare_taxa_charts.py: A Python program to automate generation of publication ready taxonomic pie chart images from QIIME

Vijay Lakhujani, Chandan Badapanda
{"title":"prepare_taxa_charts.py: A Python program to automate generation of publication ready taxonomic pie chart images from QIIME","authors":"Vijay Lakhujani,&nbsp;Chandan Badapanda","doi":"10.1016/j.gdata.2017.03.009","DOIUrl":null,"url":null,"abstract":"<div><p>QIIME (Quantitative Insights Into Microbial Ecology) is one of the most popular open-source bioinformatics suite for performing metagenome, 16S rRNA amplicon and Internal Transcribed Spacer (ITS) data analysis. Although, it is very comprehensive and powerful tool, it lacks a method to provide publication ready taxonomic pie charts. The script <em>plot_taxa_summary</em>.<em>py</em> bundled with QIIME generate a html file and a folder containing taxonomic pie chart and legend as separate images. The images have randomly generated alphanumeric names. Therefore, it is difficult to associate the pie chart with the legend and the corresponding sample identifier. Even if the option to have the legend within the html file is selected while executing <em>plot_taxa_summary</em>.<em>py</em>, it is very tedious to crop a complete image (having both the pie chart and the legend) due to unequal image sizes. It requires a lot of time to manually prepare the pie charts for multiple samples for publication purpose. Moreover, there are chances of error while identifying the pie chart and legend pair due to random alphanumeric names of the images. To bypass all these bottlenecks and make this process efficient, we have developed a python based program, <em>prepare_taxa_charts</em>.<em>py</em>, to automate the renaming, cropping and merging of taxonomic pie chart and corresponding legend image into a single, good quality publication ready image. This program not only augments the functionality of <em>plot_taxa_summary</em>.<em>py</em> but is also very fast in terms of CPU time and user friendly.</p></div>","PeriodicalId":56340,"journal":{"name":"Genomics Data","volume":"12 ","pages":"Pages 97-101"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.gdata.2017.03.009","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics Data","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213596016302070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

QIIME (Quantitative Insights Into Microbial Ecology) is one of the most popular open-source bioinformatics suite for performing metagenome, 16S rRNA amplicon and Internal Transcribed Spacer (ITS) data analysis. Although, it is very comprehensive and powerful tool, it lacks a method to provide publication ready taxonomic pie charts. The script plot_taxa_summary.py bundled with QIIME generate a html file and a folder containing taxonomic pie chart and legend as separate images. The images have randomly generated alphanumeric names. Therefore, it is difficult to associate the pie chart with the legend and the corresponding sample identifier. Even if the option to have the legend within the html file is selected while executing plot_taxa_summary.py, it is very tedious to crop a complete image (having both the pie chart and the legend) due to unequal image sizes. It requires a lot of time to manually prepare the pie charts for multiple samples for publication purpose. Moreover, there are chances of error while identifying the pie chart and legend pair due to random alphanumeric names of the images. To bypass all these bottlenecks and make this process efficient, we have developed a python based program, prepare_taxa_charts.py, to automate the renaming, cropping and merging of taxonomic pie chart and corresponding legend image into a single, good quality publication ready image. This program not only augments the functionality of plot_taxa_summary.py but is also very fast in terms of CPU time and user friendly.

Abstract Image

Abstract Image

Abstract Image

prepare_taxa_charts.py:一个Python程序,用于从QIIME自动生成准备发布的分类饼图图像
QIIME (Quantitative Insights Into Microbial Ecology)是最流行的开源生物信息学套件之一,用于执行宏基因组,16S rRNA扩增子和内部转录间隔器(ITS)数据分析。虽然它是一个非常全面和强大的工具,但它缺乏提供出版准备的分类饼状图的方法。与QIIME绑定的脚本plot_taxa_summary.py生成一个html文件和一个文件夹,其中包含分类饼图和图例作为单独的图像。这些图像具有随机生成的字母数字名称。因此,很难将饼状图与图例和相应的样本标识符联系起来。即使在执行plot_taxa_summary.py时选择了在html文件中包含图例的选项,由于图像大小不相等,裁剪完整的图像(同时具有饼图和图例)也是非常繁琐的。为发布目的手动准备多个示例的饼状图需要花费大量时间。此外,在识别饼图和图例对时,由于图像的随机字母数字名称,有可能出现错误。为了绕过所有这些瓶颈并使这个过程高效,我们开发了一个基于python的程序prepare_taxa_charts.py,它可以自动地将分类饼图和相应的图例图像重命名、裁剪和合并为一个高质量的出版物准备图像。这个程序不仅增强了plot_taxa_summary.py的功能,而且在CPU时间和用户友好性方面也非常快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信