Kumar Kandadi Muralidharan, Geoffrey Kuesters, Tatiana Plavina, Meena Subramanyam, Daniel D Mikol, Sreeja Gopal, Ivan Nestorov
{"title":"Population Pharmacokinetics and Target Engagement of Natalizumab in Patients With Multiple Sclerosis.","authors":"Kumar Kandadi Muralidharan, Geoffrey Kuesters, Tatiana Plavina, Meena Subramanyam, Daniel D Mikol, Sreeja Gopal, Ivan Nestorov","doi":"10.1002/jcph.894","DOIUrl":null,"url":null,"abstract":"<p><p>Natalizumab (humanized immunoglobulin G4 antibody targeting alpha-4 integrins) is a highly efficacious treatment for relapsing-remitting multiple sclerosis (RRMS) that has been in clinical use since 2006. However, natalizumab pharmacokinetic (PK) characteristics and concentration alpha-4 integrin saturation relationships have not been well described in the scientific literature. Therefore, clinical data from 11 studies were pooled and analyzed to characterize the PK and pharmacodynamic (PD) properties of natalizumab in RRMS subjects. Natalizumab PK was best described using a 2-compartment model with linear first-order and Michaelis-Menten elimination. Subcutaneous absorption of natalizumab was characterized using first-order absorption with lag time. The relationship between natalizumab concentration and alpha-4 integrin saturation (PD) was best described by a direct response model with a sigmoidal effect on alpha-4 integrin saturation mediated by a maximum effect relationship with natalizumab concentrations. Covariate analysis showed that body weight, product formulations, and the presence of antinatalizumab antibodies were the main covariates affecting natalizumab PK, whereas age and formulations affected PD. The use of simulations based on a pharmacokinetic-pharmacodynamic model showed that covariates, although statistically significant, are not expected to have any clinical impact at the approved clinical dosing regimen of natalizumab (300 mg once every 4 weeks).</p>","PeriodicalId":15536,"journal":{"name":"Journal of clinical pharmacology","volume":"57 8","pages":"1017-1030"},"PeriodicalIF":2.4000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/jcph.894","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of clinical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jcph.894","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/4/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 28
Abstract
Natalizumab (humanized immunoglobulin G4 antibody targeting alpha-4 integrins) is a highly efficacious treatment for relapsing-remitting multiple sclerosis (RRMS) that has been in clinical use since 2006. However, natalizumab pharmacokinetic (PK) characteristics and concentration alpha-4 integrin saturation relationships have not been well described in the scientific literature. Therefore, clinical data from 11 studies were pooled and analyzed to characterize the PK and pharmacodynamic (PD) properties of natalizumab in RRMS subjects. Natalizumab PK was best described using a 2-compartment model with linear first-order and Michaelis-Menten elimination. Subcutaneous absorption of natalizumab was characterized using first-order absorption with lag time. The relationship between natalizumab concentration and alpha-4 integrin saturation (PD) was best described by a direct response model with a sigmoidal effect on alpha-4 integrin saturation mediated by a maximum effect relationship with natalizumab concentrations. Covariate analysis showed that body weight, product formulations, and the presence of antinatalizumab antibodies were the main covariates affecting natalizumab PK, whereas age and formulations affected PD. The use of simulations based on a pharmacokinetic-pharmacodynamic model showed that covariates, although statistically significant, are not expected to have any clinical impact at the approved clinical dosing regimen of natalizumab (300 mg once every 4 weeks).
期刊介绍:
The Journal of Clinical Pharmacology (JCP) is a Human Pharmacology journal designed to provide physicians, pharmacists, research scientists, regulatory scientists, drug developers and academic colleagues a forum to present research in all aspects of Clinical Pharmacology. This includes original research in pharmacokinetics, pharmacogenetics/pharmacogenomics, pharmacometrics, physiologic based pharmacokinetic modeling, drug interactions, therapeutic drug monitoring, regulatory sciences (including unique methods of data analysis), special population studies, drug development, pharmacovigilance, womens’ health, pediatric pharmacology, and pharmacodynamics. Additionally, JCP publishes review articles, commentaries and educational manuscripts. The Journal also serves as an instrument to disseminate Public Policy statements from the American College of Clinical Pharmacology.