Evolving modular genetic regulatory networks with a recursive, top-down approach.

Systems and Synthetic Biology Pub Date : 2015-12-01 Epub Date: 2015-08-21 DOI:10.1007/s11693-015-9179-5
Javier Garcia-Bernardo, Margaret J Eppstein
{"title":"Evolving modular genetic regulatory networks with a recursive, top-down approach.","authors":"Javier Garcia-Bernardo,&nbsp;Margaret J Eppstein","doi":"10.1007/s11693-015-9179-5","DOIUrl":null,"url":null,"abstract":"<p><p>Being able to design genetic regulatory networks (GRNs) to achieve a desired cellular function is one of the main goals of synthetic biology. However, determining minimal GRNs that produce desired time-series behaviors is non-trivial. In this paper, we propose a 'top-down' approach to evolving small GRNs and then use these to recursively boot-strap the identification of larger, more complex, modular GRNs. We start with relatively dense GRNs and then use differential evolution (DE) to evolve interaction coefficients. When the target dynamical behavior is found embedded in a dense GRN, we narrow the focus of the search and begin aggressively pruning out excess interactions at the end of each generation. We first show that the method can quickly rediscover known small GRNs for a toggle switch and an oscillatory circuit. Next we include these GRNs as non-evolvable subnetworks in the subsequent evolution of more complex, modular GRNs. Successful solutions found in canonical DE where we truncated small interactions to zero, with or without an interaction penalty term, invariably contained many excess interactions. In contrast, by incorporating aggressive pruning and the penalty term, the DE was able to find minimal or nearly minimal GRNs in all test problems.</p>","PeriodicalId":22161,"journal":{"name":"Systems and Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11693-015-9179-5","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11693-015-9179-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/8/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Being able to design genetic regulatory networks (GRNs) to achieve a desired cellular function is one of the main goals of synthetic biology. However, determining minimal GRNs that produce desired time-series behaviors is non-trivial. In this paper, we propose a 'top-down' approach to evolving small GRNs and then use these to recursively boot-strap the identification of larger, more complex, modular GRNs. We start with relatively dense GRNs and then use differential evolution (DE) to evolve interaction coefficients. When the target dynamical behavior is found embedded in a dense GRN, we narrow the focus of the search and begin aggressively pruning out excess interactions at the end of each generation. We first show that the method can quickly rediscover known small GRNs for a toggle switch and an oscillatory circuit. Next we include these GRNs as non-evolvable subnetworks in the subsequent evolution of more complex, modular GRNs. Successful solutions found in canonical DE where we truncated small interactions to zero, with or without an interaction penalty term, invariably contained many excess interactions. In contrast, by incorporating aggressive pruning and the penalty term, the DE was able to find minimal or nearly minimal GRNs in all test problems.

Abstract Image

Abstract Image

进化模块化基因调控网络与递归,自上而下的方法。
能够设计遗传调控网络(grn)来实现所需的细胞功能是合成生物学的主要目标之一。然而,确定产生所需时间序列行为的最小grn并非易事。在本文中,我们提出了一种“自上而下”的方法来进化小型grn,然后使用这些方法递归地引导识别更大、更复杂、模块化的grn。我们从相对密集的grn开始,然后使用差分进化(DE)来进化相互作用系数。当发现目标动态行为嵌入在密集的GRN中时,我们缩小搜索的焦点,并在每一代结束时开始积极地修剪多余的相互作用。我们首先证明该方法可以快速重新发现拨动开关和振荡电路的已知小grn。接下来,我们将这些grn作为不可进化的子网包括在更复杂的模块化grn的后续进化中。在规范DE中,我们将小的交互截断为零,无论是否有交互惩罚项,成功的解决方案总是包含许多多余的交互。相比之下,通过结合积极修剪和惩罚项,DE能够在所有测试问题中找到最小或几乎最小的grn。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信