Laura A Novotny, John D Clements, Steven D Goodman, Lauren O Bakaletz
{"title":"Transcutaneous Immunization with a Band-Aid Prevents Experimental Otitis Media in a Polymicrobial Model.","authors":"Laura A Novotny, John D Clements, Steven D Goodman, Lauren O Bakaletz","doi":"10.1128/CVI.00563-16","DOIUrl":null,"url":null,"abstract":"<p><p>Otitis media (OM) is a common pediatric disease, and nontypeable <i>Haemophilus influenzae</i> (NTHI) is the predominant pathogen in chronic OM, recurrent OM, and OM associated with treatment failure. OM is also a polymicrobial disease, wherein an upper respiratory tract viral infection predisposes to ascension of NTHI from the nasopharynx, the site of colonization, to the normally sterile middle ear, resulting in disease. Using a clinically relevant viral-bacterial coinfection model of NTHI-induced OM, we performed transcutaneous immunization (TCI) via a band-aid delivery system to administer each of three promising NTHI vaccine candidates derived from bacterial adhesive proteins and biofilm mediators: recombinant soluble PilA (rsPilA), chimV4, and integration host factor. Each immunogen was admixed with the adjuvant LT(R192G/L211A), a double mutant of <i>Escherichia coli</i> heat-labile enterotoxin, and assessed for relative ability to prevent the onset of experimental OM. For each cohort, the presence of circulating immunogen-specific antibody-secreting cells and serum antibody was confirmed prior to intranasal NTHI challenge. After bacterial challenge, blinded video otoscopy and tympanometry revealed a significant reduction in the proportion of animals with signs of OM compared to levels in animals receiving adjuvant only, with an overall vaccine efficacy of 64 to 77%. These data are the first to demonstrate the efficacy afforded by TCI with a band-aid vaccine delivery system in a clinically relevant polymicrobial model of OM. The simplicity of TCI with a band-aid and the significant efficacy observed here hold great promise for reducing the global burden of OM in the pediatric population.</p>","PeriodicalId":10271,"journal":{"name":"Clinical and Vaccine Immunology","volume":"24 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1128/CVI.00563-16","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Vaccine Immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/CVI.00563-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/6/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 23
Abstract
Otitis media (OM) is a common pediatric disease, and nontypeable Haemophilus influenzae (NTHI) is the predominant pathogen in chronic OM, recurrent OM, and OM associated with treatment failure. OM is also a polymicrobial disease, wherein an upper respiratory tract viral infection predisposes to ascension of NTHI from the nasopharynx, the site of colonization, to the normally sterile middle ear, resulting in disease. Using a clinically relevant viral-bacterial coinfection model of NTHI-induced OM, we performed transcutaneous immunization (TCI) via a band-aid delivery system to administer each of three promising NTHI vaccine candidates derived from bacterial adhesive proteins and biofilm mediators: recombinant soluble PilA (rsPilA), chimV4, and integration host factor. Each immunogen was admixed with the adjuvant LT(R192G/L211A), a double mutant of Escherichia coli heat-labile enterotoxin, and assessed for relative ability to prevent the onset of experimental OM. For each cohort, the presence of circulating immunogen-specific antibody-secreting cells and serum antibody was confirmed prior to intranasal NTHI challenge. After bacterial challenge, blinded video otoscopy and tympanometry revealed a significant reduction in the proportion of animals with signs of OM compared to levels in animals receiving adjuvant only, with an overall vaccine efficacy of 64 to 77%. These data are the first to demonstrate the efficacy afforded by TCI with a band-aid vaccine delivery system in a clinically relevant polymicrobial model of OM. The simplicity of TCI with a band-aid and the significant efficacy observed here hold great promise for reducing the global burden of OM in the pediatric population.
期刊介绍:
Cessation. First launched as Clinical and Diagnostic Laboratory Immunology (CDLI) in 1994, CVI published articles that enhanced the understanding of the immune response in health and disease and after vaccination by showcasing discoveries in clinical, laboratory, and vaccine immunology. CVI was committed to advancing all aspects of vaccine research and immunization, including discovery of new vaccine antigens and vaccine design, development and evaluation of vaccines in animal models and in humans, characterization of immune responses and mechanisms of vaccine action, controlled challenge studies to assess vaccine efficacy, study of vaccine vectors, adjuvants, and immunomodulators, immune correlates of protection, and clinical trials.