Electric Fields and Enzyme Catalysis.

IF 12.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Annual review of biochemistry Pub Date : 2017-06-20 Epub Date: 2017-03-24 DOI:10.1146/annurev-biochem-061516-044432
Stephen D Fried, Steven G Boxer
{"title":"Electric Fields and Enzyme Catalysis.","authors":"Stephen D Fried, Steven G Boxer","doi":"10.1146/annurev-biochem-061516-044432","DOIUrl":null,"url":null,"abstract":"<p><p>What happens inside an enzyme's active site to allow slow and difficult chemical reactions to occur so rapidly? This question has occupied biochemists' attention for a long time. Computer models of increasing sophistication have predicted an important role for electrostatic interactions in enzymatic reactions, yet this hypothesis has proved vexingly difficult to test experimentally. Recent experiments utilizing the vibrational Stark effect make it possible to measure the electric field a substrate molecule experiences when bound inside its enzyme's active site. These experiments have provided compelling evidence supporting a major electrostatic contribution to enzymatic catalysis. Here, we review these results and develop a simple model for electrostatic catalysis that enables us to incorporate disparate concepts introduced by many investigators to describe how enzymes work into a more unified framework stressing the importance of electric fields at the active site.</p>","PeriodicalId":7980,"journal":{"name":"Annual review of biochemistry","volume":"86 ","pages":"387-415"},"PeriodicalIF":12.1000,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5600505/pdf/nihms870064.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biochem-061516-044432","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/3/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

What happens inside an enzyme's active site to allow slow and difficult chemical reactions to occur so rapidly? This question has occupied biochemists' attention for a long time. Computer models of increasing sophistication have predicted an important role for electrostatic interactions in enzymatic reactions, yet this hypothesis has proved vexingly difficult to test experimentally. Recent experiments utilizing the vibrational Stark effect make it possible to measure the electric field a substrate molecule experiences when bound inside its enzyme's active site. These experiments have provided compelling evidence supporting a major electrostatic contribution to enzymatic catalysis. Here, we review these results and develop a simple model for electrostatic catalysis that enables us to incorporate disparate concepts introduced by many investigators to describe how enzymes work into a more unified framework stressing the importance of electric fields at the active site.

Abstract Image

Abstract Image

Abstract Image

电场与酶催化作用
酶的活性位点内发生了什么,使缓慢而困难的化学反应如此迅速地发生?长期以来,这个问题一直是生物化学家关注的焦点。越来越复杂的计算机模型预测,静电相互作用在酶促反应中起着重要作用,但这一假设却很难在实验中得到验证。最近利用振动斯塔克效应进行的实验可以测量底物分子结合到酶的活性位点时所经历的电场。这些实验提供了令人信服的证据,支持静电对酶催化的重大贡献。在这里,我们回顾了这些研究成果,并建立了一个简单的静电催化模型,使我们能够将许多研究者为描述酶如何工作而引入的不同概念纳入一个更统一的框架,强调活性位点电场的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual review of biochemistry
Annual review of biochemistry 生物-生化与分子生物学
CiteScore
33.90
自引率
0.00%
发文量
31
期刊介绍: The Annual Review of Biochemistry, in publication since 1932, sets the standard for review articles in biological chemistry and molecular biology. Since its inception, these volumes have served as an indispensable resource for both the practicing biochemist and students of biochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信