Exploring Human Antimicrobial Antibody Responses on a Single B Cell Level.

Q2 Biochemistry, Genetics and Molecular Biology
Clinical and Vaccine Immunology Pub Date : 2017-05-05 Print Date: 2017-05-01 DOI:10.1128/CVI.00544-16
Daniel Hofmann, Jonathan R Lai
{"title":"Exploring Human Antimicrobial Antibody Responses on a Single B Cell Level.","authors":"Daniel Hofmann,&nbsp;Jonathan R Lai","doi":"10.1128/CVI.00544-16","DOIUrl":null,"url":null,"abstract":"<p><p>Analysis of monoclonal antibodies (MAbs) derived from single B cell cloning has been highly beneficial for antimicrobial immunotherapy, vaccine design, and advancing our understanding of pathogen-triggered effects on the human immunoglobulin repertoire. Sequencing of variable domains of single B cells, and characterization of binding and functional activities of MAbs derived from those sequences, provides in-depth insight not only into sites of susceptibility for antibody-mediated neutralization or opsonization of the pathogen but also into the dynamics of protective antibody evolution during infection. This information can be utilized to rapidly develop novel immunotherapies of completely human origin and provides a roadmap for structure-based vaccine design that aims to elicit similar protective antibody responses. Here, we summarize recent aspects of the single B cell cloning approach.</p>","PeriodicalId":10271,"journal":{"name":"Clinical and Vaccine Immunology","volume":"24 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1128/CVI.00544-16","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Vaccine Immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/CVI.00544-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/5/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 6

Abstract

Analysis of monoclonal antibodies (MAbs) derived from single B cell cloning has been highly beneficial for antimicrobial immunotherapy, vaccine design, and advancing our understanding of pathogen-triggered effects on the human immunoglobulin repertoire. Sequencing of variable domains of single B cells, and characterization of binding and functional activities of MAbs derived from those sequences, provides in-depth insight not only into sites of susceptibility for antibody-mediated neutralization or opsonization of the pathogen but also into the dynamics of protective antibody evolution during infection. This information can be utilized to rapidly develop novel immunotherapies of completely human origin and provides a roadmap for structure-based vaccine design that aims to elicit similar protective antibody responses. Here, we summarize recent aspects of the single B cell cloning approach.

Abstract Image

在单个B细胞水平上探索人类抗微生物抗体反应。
从单个B细胞克隆获得的单克隆抗体(mab)的分析对抗菌免疫治疗、疫苗设计以及推进我们对病原体触发的对人类免疫球蛋白库的影响的理解非常有益。对单个B细胞可变结构域的测序,以及从这些序列中获得的单克隆抗体的结合和功能活性的表征,不仅可以深入了解抗体介导的病原体中和或调节的易感性位点,还可以深入了解感染过程中保护性抗体进化的动态。这一信息可用于快速开发完全源自人类的新型免疫疗法,并为基于结构的疫苗设计提供路线图,旨在引发类似的保护性抗体反应。在这里,我们总结了单B细胞克隆方法的最新方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Clinical and Vaccine Immunology
Clinical and Vaccine Immunology 医学-传染病学
CiteScore
2.88
自引率
0.00%
发文量
0
审稿时长
1.5 months
期刊介绍: Cessation. First launched as Clinical and Diagnostic Laboratory Immunology (CDLI) in 1994, CVI published articles that enhanced the understanding of the immune response in health and disease and after vaccination by showcasing discoveries in clinical, laboratory, and vaccine immunology. CVI was committed to advancing all aspects of vaccine research and immunization, including discovery of new vaccine antigens and vaccine design, development and evaluation of vaccines in animal models and in humans, characterization of immune responses and mechanisms of vaccine action, controlled challenge studies to assess vaccine efficacy, study of vaccine vectors, adjuvants, and immunomodulators, immune correlates of protection, and clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信