Fokker−Planck Equation and Langevin Equation for One Brownian Particle in a Nonequilibrium Bath

IF 2.781
Joan-Emma Shea, Irwin Oppenheim
{"title":"Fokker−Planck Equation and Langevin Equation for One Brownian Particle in a Nonequilibrium Bath","authors":"Joan-Emma Shea,&nbsp;Irwin Oppenheim","doi":"10.1021/jp961605d","DOIUrl":null,"url":null,"abstract":"<p >The Brownian motion of a large spherical particle of mass <i>M</i> immersed in a nonequilibrium bath of <i>N</i> light spherical particles of mass <i>m</i> is studied. A Fokker?Planck equation and a generalized Langevin equation for an arbitrary function of the position and momentum of the Brownian particle are derived from first principles of statistical mechanics using time-dependent projection operators. These projection operators reflect the nonequilibrium nature of the bath, which is described by the exact nonequilibrium distribution function of Oppenheim and Levine [Oppenheim, I.; Levine, R. D. <i>Physica A</i><b>1979</b>, <i>99</i>, 383]. The Fokker?Planck equation is obtained by eliminating the fast bath variables of the system [Van Kampen, N. G.; Oppenheim, I. <i>Physica A</i><b>1986</b>, <i>138</i>, 231], while the Langevin equation is obtained using a projection operator which averages over these variables [Mazur, P.; Oppenheim, I. <i>Physica</i><b>1970</b>, <i>50</i>, 241]. The two methods yield equivalent results, valid to second order in the small parameters ε = (<i>m</i>/<i>M</i>)<sup>1/2</sup> and λ, where λ is a measure of the magnitude of the macroscopic gradients of the system. </p>","PeriodicalId":58,"journal":{"name":"The Journal of Physical Chemistry ","volume":"100 49","pages":"19035–19042"},"PeriodicalIF":2.7810,"publicationDate":"1996-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/jp961605d","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry ","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jp961605d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

The Brownian motion of a large spherical particle of mass M immersed in a nonequilibrium bath of N light spherical particles of mass m is studied. A Fokker?Planck equation and a generalized Langevin equation for an arbitrary function of the position and momentum of the Brownian particle are derived from first principles of statistical mechanics using time-dependent projection operators. These projection operators reflect the nonequilibrium nature of the bath, which is described by the exact nonequilibrium distribution function of Oppenheim and Levine [Oppenheim, I.; Levine, R. D. Physica A1979, 99, 383]. The Fokker?Planck equation is obtained by eliminating the fast bath variables of the system [Van Kampen, N. G.; Oppenheim, I. Physica A1986, 138, 231], while the Langevin equation is obtained using a projection operator which averages over these variables [Mazur, P.; Oppenheim, I. Physica1970, 50, 241]. The two methods yield equivalent results, valid to second order in the small parameters ε = (m/M)1/2 and λ, where λ is a measure of the magnitude of the macroscopic gradients of the system.

非平衡槽中单个布朗粒子的Fokker - Planck方程和Langevin方程
研究了一个质量为M的大球粒浸入N个质量为M的轻球粒的非平衡浴中的布朗运动。福克吗?从统计力学的第一原理出发,利用时变投影算子导出了布朗粒子的任意位置和动量函数的普朗克方程和广义朗之万方程。这些投影算子反映了浴池的非平衡性质,这是由Oppenheim和Levine的精确非平衡分布函数所描述的[Oppenheim, I.;李建平,李建平。中国生物医学工程学报,1999,19(3):357 - 357。福克?普朗克方程是通过消去系统的快浴变量得到的[Van Kampen, n.g.;Oppenheim, I. physics a 1986, 138, 231],而Langevin方程是使用对这些变量进行平均的投影算子得到的[Mazur, P.;李建平,刘建平。中国生物医学工程学报,1997,22(1):1 - 4。在ε = (m/ m)1/2和λ的小参数范围内,这两种方法得到了等效的二阶结果,其中λ是系统宏观梯度大小的度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信