Morphogen interpretation: concentration, time, competence, and signaling dynamics.

Q1 Biochemistry, Genetics and Molecular Biology
Andreas Sagner, James Briscoe
{"title":"Morphogen interpretation: concentration, time, competence, and signaling dynamics.","authors":"Andreas Sagner,&nbsp;James Briscoe","doi":"10.1002/wdev.271","DOIUrl":null,"url":null,"abstract":"<p><p>Tissue patterning during animal development is orchestrated by a handful of inductive signals. Most of these developmental cues act as morphogens, meaning they are locally produced secreted molecules that act at a distance to govern tissue patterning. The iterative use of the same signaling molecules in different developmental contexts demands that signal interpretation occurs in a highly context-dependent manner. Hence the interpretation of signal depends on the specific competence of the receiving cells. Moreover, it has become clear that the differential interpretation of morphogens depends not only on the level of signaling but also the signaling dynamics, particularly the duration of signaling. In this review, we outline molecular mechanisms proposed in recent studies that explain how the response to morphogens is determined by differential competence, pathway intrinsic feedback, and the interpretation of signaling dynamics by gene regulatory networks. WIREs Dev Biol 2017, 6:e271. doi: 10.1002/wdev.271 For further resources related to this article, please visit the WIREs website.</p>","PeriodicalId":23630,"journal":{"name":"Wiley Interdisciplinary Reviews: Developmental Biology","volume":"6 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wdev.271","citationCount":"122","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wdev.271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/3/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 122

Abstract

Tissue patterning during animal development is orchestrated by a handful of inductive signals. Most of these developmental cues act as morphogens, meaning they are locally produced secreted molecules that act at a distance to govern tissue patterning. The iterative use of the same signaling molecules in different developmental contexts demands that signal interpretation occurs in a highly context-dependent manner. Hence the interpretation of signal depends on the specific competence of the receiving cells. Moreover, it has become clear that the differential interpretation of morphogens depends not only on the level of signaling but also the signaling dynamics, particularly the duration of signaling. In this review, we outline molecular mechanisms proposed in recent studies that explain how the response to morphogens is determined by differential competence, pathway intrinsic feedback, and the interpretation of signaling dynamics by gene regulatory networks. WIREs Dev Biol 2017, 6:e271. doi: 10.1002/wdev.271 For further resources related to this article, please visit the WIREs website.

Abstract Image

Abstract Image

Abstract Image

形态形成解释:浓度、时间、能力和信号动力学。
动物发育过程中的组织模式是由少数感应信号精心安排的。这些发育线索中的大多数都是形态形成因子,这意味着它们是局部产生的分泌分子,在一定距离内控制组织模式。在不同的发育环境中反复使用相同的信号分子,要求信号解释以高度依赖于环境的方式发生。因此,信号的解释取决于接收细胞的特定能力。此外,很明显,形态因子的不同解释不仅取决于信号水平,还取决于信号动力学,特别是信号的持续时间。在这篇综述中,我们概述了最近研究中提出的分子机制,这些机制解释了如何通过差异能力、途径内在反馈和基因调控网络对信号动力学的解释来决定对形态因子的反应。中国生物医学工程学报,2017,26(6):771 - 771。doi: 10.1002 / wdev.271有关与本文相关的更多资源,请访问WIREs网站。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Developmental biology is concerned with the fundamental question of how a single cell, the fertilized egg, ultimately produces a complex, fully patterned adult organism. This problem is studied on many different biological levels, from the molecular to the organismal. Developed in association with the Society for Developmental Biology, WIREs Developmental Biology will provide a unique interdisciplinary forum dedicated to fostering excellence in research and education and communicating key advances in this important field. The collaborative and integrative ethos of the WIREs model will facilitate connections to related disciplines such as genetics, systems biology, bioengineering, and psychology. The topical coverage of WIREs Developmental Biology includes: Establishment of Spatial and Temporal Patterns; Gene Expression and Transcriptional Hierarchies; Signaling Pathways; Early Embryonic Development; Invertebrate Organogenesis; Vertebrate Organogenesis; Nervous System Development; Birth Defects; Adult Stem Cells, Tissue Renewal and Regeneration; Cell Types and Issues Specific to Plants; Comparative Development and Evolution; and Technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信