Nonclinical Pharmacology/Toxicology Study of AAV8.TBG.mLDLR and AAV8.TBG.hLDLR in a Mouse Model of Homozygous Familial Hypercholesterolemia.

Q1 Medicine
Jenny A Greig, Maria P Limberis, Peter Bell, Shu-Jen Chen, Roberto Calcedo, Daniel J Rader, James M Wilson
{"title":"Nonclinical Pharmacology/Toxicology Study of AAV8.TBG.mLDLR and AAV8.TBG.hLDLR in a Mouse Model of Homozygous Familial Hypercholesterolemia.","authors":"Jenny A Greig,&nbsp;Maria P Limberis,&nbsp;Peter Bell,&nbsp;Shu-Jen Chen,&nbsp;Roberto Calcedo,&nbsp;Daniel J Rader,&nbsp;James M Wilson","doi":"10.1089/humc.2017.007","DOIUrl":null,"url":null,"abstract":"<p><p>The homozygous form of familial hypercholesterolemia (HoFH) is an excellent model for developing in vivo gene therapy in humans. The success of orthotropic liver transplantation in correcting the metabolic abnormalities in HoFH suggests that the correction of low-density lipoprotein receptor (LDLR) expression in hepatocytes via gene therapy should be sufficient for therapeutic efficacy. Vectors based on adeno-associated virus serotype 8 (AAV8) have been previously developed for liver-targeted gene therapy of a number of genetic diseases, including HoFH. In preparation for initiating a Phase 1 clinical trial of AAV8-mediated LDLR gene therapy for HoFH, a combined pharmacology/toxicology study was conducted in a mouse model of HoFH. No dose-limiting toxicities were found at or below 6.0 × 10<sup>13</sup> GC/kg. Therefore, the maximally tolerated dose is greater than the highest dose that was tested. Mild and transient liver pathology was noted at the highest dose. Therefore, the no effect dose was greater than or equal to the middle dose of 7.5 × 10<sup>12</sup> GC/kg. The minimally effective dose was determined to be ≤7.5 × 10<sup>11</sup> GC/kg, based on stable reductions in cholesterol that were considered to be clinically significant. This translates to a therapeutic window of ≥80-fold for the treatment of HoFH.</p>","PeriodicalId":51315,"journal":{"name":"Human Gene Therapy Clinical Development","volume":"28 1","pages":"28-38"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/humc.2017.007","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Gene Therapy Clinical Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/humc.2017.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 31

Abstract

The homozygous form of familial hypercholesterolemia (HoFH) is an excellent model for developing in vivo gene therapy in humans. The success of orthotropic liver transplantation in correcting the metabolic abnormalities in HoFH suggests that the correction of low-density lipoprotein receptor (LDLR) expression in hepatocytes via gene therapy should be sufficient for therapeutic efficacy. Vectors based on adeno-associated virus serotype 8 (AAV8) have been previously developed for liver-targeted gene therapy of a number of genetic diseases, including HoFH. In preparation for initiating a Phase 1 clinical trial of AAV8-mediated LDLR gene therapy for HoFH, a combined pharmacology/toxicology study was conducted in a mouse model of HoFH. No dose-limiting toxicities were found at or below 6.0 × 1013 GC/kg. Therefore, the maximally tolerated dose is greater than the highest dose that was tested. Mild and transient liver pathology was noted at the highest dose. Therefore, the no effect dose was greater than or equal to the middle dose of 7.5 × 1012 GC/kg. The minimally effective dose was determined to be ≤7.5 × 1011 GC/kg, based on stable reductions in cholesterol that were considered to be clinically significant. This translates to a therapeutic window of ≥80-fold for the treatment of HoFH.

Abstract Image

Abstract Image

Abstract Image

AAV8.TBG的非临床药理学/毒理学研究。mLDLR和AAV8.TBG。纯合子家族性高胆固醇血症小鼠模型中的hLDLR。
纯合子形式的家族性高胆固醇血症(HoFH)是一个很好的模式,发展在人体内基因治疗。正异性肝移植在纠正HoFH代谢异常方面的成功表明,通过基因治疗纠正肝细胞中低密度脂蛋白受体(LDLR)的表达应该足以达到治疗效果。基于腺相关病毒血清型8 (AAV8)的载体先前已被开发用于许多遗传疾病的肝脏靶向基因治疗,包括HoFH。为了准备启动aav8介导的LDLR基因治疗HoFH的1期临床试验,在HoFH小鼠模型中进行了药理学/毒理学联合研究。6.0 × 1013 GC/kg及以下均无剂量限制性毒性。因此,最大耐受剂量大于测试的最高剂量。在最高剂量时,肝脏出现轻度和短暂性病理。因此,无效应剂量大于或等于中剂量7.5 × 1012gc /kg。最低有效剂量确定为≤7.5 × 1011 GC/kg,基于稳定的胆固醇降低,被认为具有临床意义。这意味着治疗HoFH的治疗窗口≥80倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Human Gene Therapy Clinical Development
Human Gene Therapy Clinical Development CRITICAL CARE MEDICINEMEDICINE, RESEARCH &-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
7.20
自引率
0.00%
发文量
0
期刊介绍: Human Gene Therapy (HGT) is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes important advances in DNA, RNA, cell and immune therapies, validating the latest advances in research and new technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信