Heinz C Schröder, Emad Tolba, Bärbel Diehl-Seifert, Xiaohong Wang, Werner E G Müller
{"title":"Electrospinning of Bioactive Wound-Healing Nets.","authors":"Heinz C Schröder, Emad Tolba, Bärbel Diehl-Seifert, Xiaohong Wang, Werner E G Müller","doi":"10.1007/978-3-319-51284-6_8","DOIUrl":null,"url":null,"abstract":"<p><p>The availability of appropriate dressings for treatment of wounds, in particular chronic wounds, is a task that still awaits better solutions than provided by currently applied materials. The method of electrospinning enables the fabrication of novel materials for wound dressings due to the high surface area and porosity of the electrospun meshes and the possibility to include bioactive ingredients. Recent results show that the incorporation of biologically active inorganic polyphosphate microparticles and microspheres and synergistically acting retinoids into electrospun polymer fibers yields biocompatible and antibacterial mats for potential dressings with improved wound-healing properties. The underlying principles and the mechanism of these new approaches in the therapy wounds, in particular wounds showing impaired healing, as well as for further applications in skin regeneration/repair, are summarized.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"55 ","pages":"259-290"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-51284-6_8","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in molecular and subcellular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-51284-6_8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 9
Abstract
The availability of appropriate dressings for treatment of wounds, in particular chronic wounds, is a task that still awaits better solutions than provided by currently applied materials. The method of electrospinning enables the fabrication of novel materials for wound dressings due to the high surface area and porosity of the electrospun meshes and the possibility to include bioactive ingredients. Recent results show that the incorporation of biologically active inorganic polyphosphate microparticles and microspheres and synergistically acting retinoids into electrospun polymer fibers yields biocompatible and antibacterial mats for potential dressings with improved wound-healing properties. The underlying principles and the mechanism of these new approaches in the therapy wounds, in particular wounds showing impaired healing, as well as for further applications in skin regeneration/repair, are summarized.
期刊介绍:
Molecular biology has been providing an overwhelming amount of data on the structural components and molecular machineries of the cell and its organelles and the complexity of intra- and intercellular communication. The molecular basis of hereditary and acquired diseases is beginning to be unravelled, and profound new insights into development and evolutionary biology have been gained from molecular approaches. Progress in Molecular and Subcellular Biology summarises the most recent developments in this fascinating area of biology.