Real-time PCR probe optimization using design of experiments approach

Q1 Biochemistry, Genetics and Molecular Biology
S. Wadle , M. Lehnert , S. Rubenwolf , R. Zengerle , F. von Stetten
{"title":"Real-time PCR probe optimization using design of experiments approach","authors":"S. Wadle ,&nbsp;M. Lehnert ,&nbsp;S. Rubenwolf ,&nbsp;R. Zengerle ,&nbsp;F. von Stetten","doi":"10.1016/j.bdq.2015.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>Primer and probe sequence designs are among the most critical input factors in real-time polymerase chain reaction (PCR) assay optimization. In this study, we present the use of statistical design of experiments (DOE) approach as a general guideline for probe optimization and more specifically focus on design optimization of label-free hydrolysis probes that are designated as mediator probes (MPs), which are used in reverse transcription MP PCR (RT-MP PCR). The effect of three input factors on assay performance was investigated: distance between primer and mediator probe cleavage site; dimer stability of MP and target sequence (influenza B virus); and dimer stability of the mediator and universal reporter (UR). The results indicated that the latter dimer stability had the greatest influence on assay performance, with RT-MP PCR efficiency increased by up to 10% with changes to this input factor. With an optimal design configuration, a detection limit of 3–14 target copies/10<!--> <!-->μl reaction could be achieved. This improved detection limit was confirmed for another UR design and for a second target sequence, human metapneumovirus, with 7–11 copies/10<!--> <!-->μl reaction detected in an optimum case. The DOE approach for improving oligonucleotide designs for real-time PCR not only produces excellent results but may also reduce the number of experiments that need to be performed, thus reducing costs and experimental times.</p></div>","PeriodicalId":38073,"journal":{"name":"Biomolecular Detection and Quantification","volume":"7 ","pages":"Pages 1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bdq.2015.12.002","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular Detection and Quantification","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214753515300139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 22

Abstract

Primer and probe sequence designs are among the most critical input factors in real-time polymerase chain reaction (PCR) assay optimization. In this study, we present the use of statistical design of experiments (DOE) approach as a general guideline for probe optimization and more specifically focus on design optimization of label-free hydrolysis probes that are designated as mediator probes (MPs), which are used in reverse transcription MP PCR (RT-MP PCR). The effect of three input factors on assay performance was investigated: distance between primer and mediator probe cleavage site; dimer stability of MP and target sequence (influenza B virus); and dimer stability of the mediator and universal reporter (UR). The results indicated that the latter dimer stability had the greatest influence on assay performance, with RT-MP PCR efficiency increased by up to 10% with changes to this input factor. With an optimal design configuration, a detection limit of 3–14 target copies/10 μl reaction could be achieved. This improved detection limit was confirmed for another UR design and for a second target sequence, human metapneumovirus, with 7–11 copies/10 μl reaction detected in an optimum case. The DOE approach for improving oligonucleotide designs for real-time PCR not only produces excellent results but may also reduce the number of experiments that need to be performed, thus reducing costs and experimental times.

Abstract Image

采用实验设计法优化实时PCR探针
引物和探针序列设计是实时聚合酶链反应(PCR)分析优化中最关键的输入因素之一。在本研究中,我们提出使用实验统计设计(DOE)方法作为探针优化的一般指导方针,并更具体地关注无标记水解探针的设计优化,这些探针被指定为介质探针(MPs),用于反转录MP PCR (RT-MP PCR)。考察了三个输入因素对分析性能的影响:引物与介质探针切割位点之间的距离;MP与靶序列(乙型流感病毒)二聚体的稳定性;和二聚体的稳定性的中介和通用报告(UR)。结果表明,后一种二聚体的稳定性对检测性能的影响最大,随着该输入因子的改变,RT-MP PCR效率可提高10%。在最佳设计配置下,反应检出限为3 ~ 14个靶拷贝/10 μl。这一提高的检出限在另一个UR设计和第二个目标序列人偏肺病毒中得到证实,在最佳病例中检测到7-11个拷贝/10 μl反应。DOE方法用于改进实时PCR的寡核苷酸设计,不仅可以产生出色的结果,而且可以减少需要进行的实验次数,从而降低成本和实验时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomolecular Detection and Quantification
Biomolecular Detection and Quantification Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
14.20
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信