Generalized Sequential Probability Ratio Test for Separate Families of Hypotheses.

Sequential Analysis Pub Date : 2014-01-01 Epub Date: 2014-10-22 DOI:10.1080/07474946.2014.961861
Xiaoou Li, Jingchen Liu, Zhiliang Ying
{"title":"Generalized Sequential Probability Ratio Test for Separate Families of Hypotheses.","authors":"Xiaoou Li,&nbsp;Jingchen Liu,&nbsp;Zhiliang Ying","doi":"10.1080/07474946.2014.961861","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we consider the problem of testing two separate families of hypotheses via a generalization of the sequential probability ratio test. In particular, the generalized likelihood ratio statistic is considered and the stopping rule is the first boundary crossing of the generalized likelihood ratio statistic. We show that this sequential test is asymptotically optimal in the sense that it achieves asymptotically the shortest expected sample size as the maximal type I and type II error probabilities tend to zero.</p>","PeriodicalId":516303,"journal":{"name":"Sequential Analysis","volume":"33 4","pages":"539-563"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07474946.2014.961861","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sequential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07474946.2014.961861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/10/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

In this paper, we consider the problem of testing two separate families of hypotheses via a generalization of the sequential probability ratio test. In particular, the generalized likelihood ratio statistic is considered and the stopping rule is the first boundary crossing of the generalized likelihood ratio statistic. We show that this sequential test is asymptotically optimal in the sense that it achieves asymptotically the shortest expected sample size as the maximal type I and type II error probabilities tend to zero.

Abstract Image

Abstract Image

Abstract Image

独立假设族的广义序列概率比检验。
在本文中,我们考虑了用序列概率比检验的一种推广方法来检验两个不同的假设族的问题。特别考虑了广义似然比统计量,停止规则是广义似然比统计量的第一个边界交叉点。我们证明这个序列检验是渐近最优的,因为当最大类型I和类型II的错误概率趋于零时,它达到渐近最短的期望样本量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信