{"title":"DNA-PK Deficiency in Alzheimer's Disease.","authors":"Jyotshna Kanungo","doi":"10.29245/2572.942x/2016/3.1016","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is characterized by neuronal death with an accumulaton of intra-cellular neurofibrillary tangles (NFT) and extracellular amyloid plaques. Reduced DNA repair ability has been reported in AD brains. In neurons, the predominant mechanism to repair double-strand DNA breaks (DSB) is non-homologous end joining (NHEJ) that requires DNA-dependent protein kinase (DNA-PK) activity. DNA-PK is a holoenzyme comprising the p460 kD DNA-PK catalytic subunit (DNA-PKcs) and its activator Ku, a heterodimer of p86 (Ku80) and p70 (Ku70) subunits. Upon binding to double-stranded DNA ends, Ku recruits DNA-PKcs to process NHEJ. In AD brains, reduced NHEJ activity as well as DNA-PKcs and Ku protein levels have been shown. Normal aging brains also show a reduction in both DNA-PKcs and Ku levels questioning a direct link between NHEJ ability and AD, and suggesting additional players/events in AD pathogenesis. Deficiency of Ku80, a somatostatin receptor, can disrupt somatostatin signaling thus inducing amyloid beta (Aβ) generation, which in turn can potentiate DNA-PKcs degradation and consequently loss of NHEJ activity, an additional step negatively affecting DSB repair. Trigger of these two different pathways culminating in genome instability may differentiate the outcomes between AD and normal aging.</p>","PeriodicalId":16555,"journal":{"name":"Journal of neurology & neuromedicine","volume":"1 3","pages":"17-22"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4924576/pdf/nihms797425.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurology & neuromedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29245/2572.942x/2016/3.1016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is characterized by neuronal death with an accumulaton of intra-cellular neurofibrillary tangles (NFT) and extracellular amyloid plaques. Reduced DNA repair ability has been reported in AD brains. In neurons, the predominant mechanism to repair double-strand DNA breaks (DSB) is non-homologous end joining (NHEJ) that requires DNA-dependent protein kinase (DNA-PK) activity. DNA-PK is a holoenzyme comprising the p460 kD DNA-PK catalytic subunit (DNA-PKcs) and its activator Ku, a heterodimer of p86 (Ku80) and p70 (Ku70) subunits. Upon binding to double-stranded DNA ends, Ku recruits DNA-PKcs to process NHEJ. In AD brains, reduced NHEJ activity as well as DNA-PKcs and Ku protein levels have been shown. Normal aging brains also show a reduction in both DNA-PKcs and Ku levels questioning a direct link between NHEJ ability and AD, and suggesting additional players/events in AD pathogenesis. Deficiency of Ku80, a somatostatin receptor, can disrupt somatostatin signaling thus inducing amyloid beta (Aβ) generation, which in turn can potentiate DNA-PKcs degradation and consequently loss of NHEJ activity, an additional step negatively affecting DSB repair. Trigger of these two different pathways culminating in genome instability may differentiate the outcomes between AD and normal aging.