The Effect of Ignoring Statistical Interactions in Regression Analyses Conducted in Epidemiologic Studies: An Example with Survival Analysis Using Cox Proportional Hazards Regression Model.

Epidemiology (Sunnyvale, Calif.) Pub Date : 2015-02-01 Epub Date: 2015-01-15 DOI:10.4172/2161-1165.1000216
K P Vatcheva, M Lee, J B McCormick, M H Rahbar
{"title":"The Effect of Ignoring Statistical Interactions in Regression Analyses Conducted in Epidemiologic Studies: An Example with Survival Analysis Using Cox Proportional Hazards Regression Model.","authors":"K P Vatcheva,&nbsp;M Lee,&nbsp;J B McCormick,&nbsp;M H Rahbar","doi":"10.4172/2161-1165.1000216","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To demonstrate the adverse impact of ignoring statistical interactions in regression models used in epidemiologic studies.</p><p><strong>Study design and setting: </strong>Based on different scenarios that involved known values for coefficient of the interaction term in Cox regression models we generated 1000 samples of size 600 each. The simulated samples and a real life data set from the Cameron County Hispanic Cohort were used to evaluate the effect of ignoring statistical interactions in these models.</p><p><strong>Results: </strong>Compared to correctly specified Cox regression models with interaction terms, misspecified models without interaction terms resulted in up to 8.95 fold bias in estimated regression coefficients. Whereas when data were generated from a perfect additive Cox proportional hazards regression model the inclusion of the interaction between the two covariates resulted in only 2% estimated bias in main effect regression coefficients estimates, but did not alter the main findings of no significant interactions.</p><p><strong>Conclusions: </strong>When the effects are synergic, the failure to account for an interaction effect could lead to bias and misinterpretation of the results, and in some instances to incorrect policy decisions. Best practices in regression analysis must include identification of interactions, including for analysis of data from epidemiologic studies.</p>","PeriodicalId":90160,"journal":{"name":"Epidemiology (Sunnyvale, Calif.)","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2161-1165.1000216","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology (Sunnyvale, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2161-1165.1000216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/1/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

Objective: To demonstrate the adverse impact of ignoring statistical interactions in regression models used in epidemiologic studies.

Study design and setting: Based on different scenarios that involved known values for coefficient of the interaction term in Cox regression models we generated 1000 samples of size 600 each. The simulated samples and a real life data set from the Cameron County Hispanic Cohort were used to evaluate the effect of ignoring statistical interactions in these models.

Results: Compared to correctly specified Cox regression models with interaction terms, misspecified models without interaction terms resulted in up to 8.95 fold bias in estimated regression coefficients. Whereas when data were generated from a perfect additive Cox proportional hazards regression model the inclusion of the interaction between the two covariates resulted in only 2% estimated bias in main effect regression coefficients estimates, but did not alter the main findings of no significant interactions.

Conclusions: When the effects are synergic, the failure to account for an interaction effect could lead to bias and misinterpretation of the results, and in some instances to incorrect policy decisions. Best practices in regression analysis must include identification of interactions, including for analysis of data from epidemiologic studies.

Abstract Image

Abstract Image

在流行病学研究中进行的回归分析中忽略统计相互作用的影响:使用Cox比例风险回归模型进行生存分析的一个例子。
目的:证明在流行病学研究中使用的回归模型中忽略统计相互作用的不利影响。研究设计和设置:基于Cox回归模型中涉及已知交互项系数值的不同场景,我们生成了1000个样本,每个样本大小为600。模拟样本和来自卡梅伦县西班牙裔队列的真实生活数据集被用来评估在这些模型中忽略统计相互作用的效果。结果:与正确指定的有相互作用项的Cox回归模型相比,没有相互作用项的错误指定模型导致估计回归系数的偏差高达8.95倍。然而,当数据来自一个完美的加性Cox比例风险回归模型时,两个协变量之间的相互作用在主效应回归系数估计中只导致2%的估计偏差,但没有改变无显著相互作用的主要发现。结论:当效应是协同的时候,未能考虑到相互作用效应可能导致对结果的偏见和误解,在某些情况下可能导致错误的政策决定。回归分析的最佳实践必须包括确定相互作用,包括对流行病学研究数据的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信