Effect of cements on fracture resistance of monolithic zirconia crowns.

Keisuke Nakamura, Mathieu Mouhat, John Magnus Nergård, Solveig Jenssen Lægreid, Taro Kanno, Percy Milleding, Ulf Örtengren
{"title":"Effect of cements on fracture resistance of monolithic zirconia crowns.","authors":"Keisuke Nakamura,&nbsp;Mathieu Mouhat,&nbsp;John Magnus Nergård,&nbsp;Solveig Jenssen Lægreid,&nbsp;Taro Kanno,&nbsp;Percy Milleding,&nbsp;Ulf Örtengren","doi":"10.3109/23337931.2015.1129908","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objectives</b> The present study investigated the effect of cements on fracture resistance of monolithic zirconia crowns in relation to their compressive strength. <b>Materials and methods</b> Four different cements were tested: zinc phosphate cement (ZPC), glass-ionomer cement (GIC), self-adhesive resin-based cement (SRC) and resin-based cement (RC). RC was used in both dual cure mode (RC-D) and chemical cure mode (RC-C). First, the compressive strength of each cement was tested according to a standard (ISO 9917-1:2004). Second, load-to-failure test was performed to analyze the crown fracture resistance. CAD/CAM-produced monolithic zirconia crowns with a minimal thickness of 0.5 mm were prepared and cemented to dies with each cement. The crown-die samples were loaded until fracture. <b>Results</b> The compressive strength of SRC, RC-D and RC-C was significantly higher than those of ZPC and GIC (<i>p</i> < 0.05). However, there was no significant difference in the fracture load of the crown between the groups. <b>Conclusion</b> The values achieved in the load-to-failure test suggest that monolithic zirconia crowns with a minimal thickness of 0.5 mm may have good resistance against fracture regardless of types of cements.</p>","PeriodicalId":6997,"journal":{"name":"Acta Biomaterialia Odontologica Scandinavica","volume":"2 1","pages":"12-19"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/23337931.2015.1129908","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia Odontologica Scandinavica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/23337931.2015.1129908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/1/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

Objectives The present study investigated the effect of cements on fracture resistance of monolithic zirconia crowns in relation to their compressive strength. Materials and methods Four different cements were tested: zinc phosphate cement (ZPC), glass-ionomer cement (GIC), self-adhesive resin-based cement (SRC) and resin-based cement (RC). RC was used in both dual cure mode (RC-D) and chemical cure mode (RC-C). First, the compressive strength of each cement was tested according to a standard (ISO 9917-1:2004). Second, load-to-failure test was performed to analyze the crown fracture resistance. CAD/CAM-produced monolithic zirconia crowns with a minimal thickness of 0.5 mm were prepared and cemented to dies with each cement. The crown-die samples were loaded until fracture. Results The compressive strength of SRC, RC-D and RC-C was significantly higher than those of ZPC and GIC (p < 0.05). However, there was no significant difference in the fracture load of the crown between the groups. Conclusion The values achieved in the load-to-failure test suggest that monolithic zirconia crowns with a minimal thickness of 0.5 mm may have good resistance against fracture regardless of types of cements.

Abstract Image

Abstract Image

Abstract Image

胶结剂对整体氧化锆冠抗断裂性能的影响。
目的研究胶结剂对整体氧化锆冠抗压强度的影响。对磷酸锌水泥(ZPC)、玻璃离子水泥(GIC)、自粘树脂基水泥(SRC)和树脂基水泥(RC)四种不同的水泥进行了测试。RC用于双固化模式(RC- d)和化学固化模式(RC- c)。首先,根据标准(ISO 9917-1:2004)测试每种水泥的抗压强度。其次,进行载荷-失效试验,分析冠状体抗断裂能力。制备了最小厚度为0.5 mm的CAD/ cam生产的整体氧化锆冠,并使用每种水泥将其粘合到模具上。冠模试样加载至断裂。结果SRC、RC-D和RC-C的抗压强度明显高于ZPC和GIC (p)。结论载荷-破坏试验的结果表明,无论何种类型的胶结物,最小厚度为0.5 mm的单片氧化锆冠都具有良好的抗断裂能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信