{"title":"Multi-locus Test and Correction for Confounding Effects in Genome-Wide Association Studies.","authors":"Donglai Chen, Chuanhai Liu, Jun Xie","doi":"10.1515/ijb-2015-0091","DOIUrl":null,"url":null,"abstract":"<p><p>Genome-wide association studies (GWAS) examine a large number of genetic variants, e. g., single nucleotide polymorphisms (SNP), and associate them with a disease of interest. Traditional statistical methods for GWASs can produce spurious associations, due to limited information from individual SNPs and confounding effects. This paper develops two statistical methods to enhance data analysis of GWASs. The first is a multiple-SNP association test, which is a weighted chi-square test derived for big contingency tables. The test assesses combinatorial effects of multiple SNPs and improves conventional methods of single SNP analysis. The second is a method that corrects for confounding effects, which may come from population stratification as well as other ambiguous (unknown) factors. The proposed method identifies a latent confounding factor, using a profile of whole genome SNPs, and eliminates confounding effects through matching or stratified statistical analysis. Simulations and a GWAS of rheumatoid arthritis demonstrate that the proposed methods dramatically remove the number of significant tests, or false positives, and outperforms other available methods.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"12 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2015-0091","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2015-0091","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Genome-wide association studies (GWAS) examine a large number of genetic variants, e. g., single nucleotide polymorphisms (SNP), and associate them with a disease of interest. Traditional statistical methods for GWASs can produce spurious associations, due to limited information from individual SNPs and confounding effects. This paper develops two statistical methods to enhance data analysis of GWASs. The first is a multiple-SNP association test, which is a weighted chi-square test derived for big contingency tables. The test assesses combinatorial effects of multiple SNPs and improves conventional methods of single SNP analysis. The second is a method that corrects for confounding effects, which may come from population stratification as well as other ambiguous (unknown) factors. The proposed method identifies a latent confounding factor, using a profile of whole genome SNPs, and eliminates confounding effects through matching or stratified statistical analysis. Simulations and a GWAS of rheumatoid arthritis demonstrate that the proposed methods dramatically remove the number of significant tests, or false positives, and outperforms other available methods.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.