A Sequential Rejection Testing Method for High-Dimensional Regression with Correlated Variables.

IF 1.2 4区 数学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Jacopo Mandozzi, Peter Bühlmann
{"title":"A Sequential Rejection Testing Method for High-Dimensional Regression with Correlated Variables.","authors":"Jacopo Mandozzi,&nbsp;Peter Bühlmann","doi":"10.1515/ijb-2015-0008","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a general, modular method for significance testing of groups (or clusters) of variables in a high-dimensional linear model. In presence of high correlations among the covariables, due to serious problems of identifiability, it is indispensable to focus on detecting groups of variables rather than singletons. We propose an inference method which allows to build in hierarchical structures. It relies on repeated sample splitting and sequential rejection, and we prove that it asymptotically controls the familywise error rate. It can be implemented on any collection of clusters and leads to improved power in comparison to more standard non-sequential rejection methods. We complement the theoretical analysis with empirical results for simulated and real data.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"12 1","pages":"79-95"},"PeriodicalIF":1.2000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2015-0008","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2015-0008","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 12

Abstract

We propose a general, modular method for significance testing of groups (or clusters) of variables in a high-dimensional linear model. In presence of high correlations among the covariables, due to serious problems of identifiability, it is indispensable to focus on detecting groups of variables rather than singletons. We propose an inference method which allows to build in hierarchical structures. It relies on repeated sample splitting and sequential rejection, and we prove that it asymptotically controls the familywise error rate. It can be implemented on any collection of clusters and leads to improved power in comparison to more standard non-sequential rejection methods. We complement the theoretical analysis with empirical results for simulated and real data.

高维相关变量回归的序贯拒绝检验方法。
我们提出了一种通用的模块化方法,用于高维线性模型中变量组(或簇)的显著性检验。在协变量之间存在高度相关性的情况下,由于存在严重的可辨识性问题,必须重点检测变量组而不是单个变量。我们提出了一种可以在层次结构中构建的推理方法。它依赖于重复样本分割和顺序拒绝,并证明了它渐进地控制了家族错误率。它可以在任何集群集合上实现,并且与更标准的非顺序拒绝方法相比,可以提高功率。我们用模拟和实际数据的实证结果来补充理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biostatistics
International Journal of Biostatistics MATHEMATICAL & COMPUTATIONAL BIOLOGY-STATISTICS & PROBABILITY
CiteScore
2.10
自引率
8.30%
发文量
28
审稿时长
>12 weeks
期刊介绍: The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信