Identification and characterization of the novel nuclease activity of human phospholipid scramblase 1.

Q2 Biochemistry, Genetics and Molecular Biology
Ulaganathan Sivagnanam, Shweta Narayana Murthy, Sathyanarayana N Gummadi
{"title":"Identification and characterization of the novel nuclease activity of human phospholipid scramblase 1.","authors":"Ulaganathan Sivagnanam,&nbsp;Shweta Narayana Murthy,&nbsp;Sathyanarayana N Gummadi","doi":"10.1186/s12858-016-0067-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Human phospholipid scramblase 1 (hPLSCR1) was initially identified as a Ca(2+) dependent phospholipid translocator involved in disrupting membrane asymmetry. Recent reports revealed that hPLSCR1 acts as a multifunctional signaling molecule rather than functioning as scramblase. hPLSCR1 is overexpressed in a variety of tumor cells and is known to interact with a number of protein molecules implying diverse functions.</p><p><strong>Results: </strong>In this study, the nuclease activity of recombinant hPLSCR1 and its biochemical properties have been determined. Point mutations were generated to identify the critical region responsible for the nuclease activity. Recombinant hPLSCR1 exhibits Mg(2+) dependent nuclease activity with an optimum pH and temperature of 8.5 and 37 °C respectively. Experiments with amino acid modifying reagents revealed that histidine, cysteine and arginine residues were crucial for its function. hPLSCR1 has five histidine residues and point mutations of histidine residues to alanine in hPLSCR1 resulted in 60 % loss in nuclease activity. Thus histidine residues could play a critical role in the nuclease activity of hPLSCR1.</p><p><strong>Conclusions: </strong>This is the first report on the novel nuclease activity of the multi-functional hPLSCR1. hPLSCR1 shows a metal dependent nuclease activity which could play a role in key cellular processes that needs to be further investigated.</p>","PeriodicalId":9113,"journal":{"name":"BMC Biochemistry","volume":"17 1","pages":"10"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12858-016-0067-8","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12858-016-0067-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 7

Abstract

Background: Human phospholipid scramblase 1 (hPLSCR1) was initially identified as a Ca(2+) dependent phospholipid translocator involved in disrupting membrane asymmetry. Recent reports revealed that hPLSCR1 acts as a multifunctional signaling molecule rather than functioning as scramblase. hPLSCR1 is overexpressed in a variety of tumor cells and is known to interact with a number of protein molecules implying diverse functions.

Results: In this study, the nuclease activity of recombinant hPLSCR1 and its biochemical properties have been determined. Point mutations were generated to identify the critical region responsible for the nuclease activity. Recombinant hPLSCR1 exhibits Mg(2+) dependent nuclease activity with an optimum pH and temperature of 8.5 and 37 °C respectively. Experiments with amino acid modifying reagents revealed that histidine, cysteine and arginine residues were crucial for its function. hPLSCR1 has five histidine residues and point mutations of histidine residues to alanine in hPLSCR1 resulted in 60 % loss in nuclease activity. Thus histidine residues could play a critical role in the nuclease activity of hPLSCR1.

Conclusions: This is the first report on the novel nuclease activity of the multi-functional hPLSCR1. hPLSCR1 shows a metal dependent nuclease activity which could play a role in key cellular processes that needs to be further investigated.

Abstract Image

Abstract Image

Abstract Image

人磷脂超燃酶1新型核酸酶活性的鉴定与表征。
背景:人类磷脂重组酶1 (hPLSCR1)最初被确定为Ca(2+)依赖性磷脂转运体,参与破坏膜不对称性。最近的报道表明,hPLSCR1作为一种多功能信号分子,而不是作为扰变酶发挥作用。hPLSCR1在多种肿瘤细胞中过表达,并且已知与许多蛋白质分子相互作用,这意味着多种功能。结果:本研究确定了重组hPLSCR1的核酸酶活性及其生化特性。产生点突变以确定负责核酸酶活性的关键区域。重组hPLSCR1在最适pH和温度分别为8.5℃和37℃时表现出Mg(2+)依赖性核酸酶活性。氨基酸修饰试剂的实验表明,组氨酸、半胱氨酸和精氨酸残基对其功能至关重要。hPLSCR1具有5个组氨酸残基,组氨酸残基对丙氨酸的点突变导致hPLSCR1核酸酶活性降低60%。因此组氨酸残基可能在hPLSCR1的核酸酶活性中起关键作用。结论:这是首次报道多功能hPLSCR1的新核酸酶活性。hPLSCR1显示出金属依赖性核酸酶活性,可能在关键的细胞过程中发挥作用,需要进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Biochemistry
BMC Biochemistry BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
4.80
自引率
0.00%
发文量
0
审稿时长
3 months
期刊介绍: BMC Biochemistry is an open access journal publishing original peer-reviewed research articles in all aspects of biochemical processes, including the structure, function and dynamics of metabolic pathways, supramolecular complexes, enzymes, proteins, nucleic acids and small molecular components of organelles, cells and tissues. BMC Biochemistry (ISSN 1471-2091) is indexed/tracked/covered by PubMed, MEDLINE, BIOSIS, CAS, EMBASE, Scopus, Zoological Record, Thomson Reuters (ISI) and Google Scholar.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信