Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies.

Epidemiology (Sunnyvale, Calif.) Pub Date : 2016-04-01 Epub Date: 2016-03-07 DOI:10.4172/2161-1165.1000227
Kristina P Vatcheva, MinJae Lee, Joseph B McCormick, Mohammad H Rahbar
{"title":"Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies.","authors":"Kristina P Vatcheva,&nbsp;MinJae Lee,&nbsp;Joseph B McCormick,&nbsp;Mohammad H Rahbar","doi":"10.4172/2161-1165.1000227","DOIUrl":null,"url":null,"abstract":"<p><p>The adverse impact of ignoring multicollinearity on findings and data interpretation in regression analysis is very well documented in the statistical literature. The failure to identify and report multicollinearity could result in misleading interpretations of the results. A review of epidemiological literature in PubMed from January 2004 to December 2013, illustrated the need for a greater attention to identifying and minimizing the effect of multicollinearity in analysis of data from epidemiologic studies. We used simulated datasets and real life data from the Cameron County Hispanic Cohort to demonstrate the adverse effects of multicollinearity in the regression analysis and encourage researchers to consider the diagnostic for multicollinearity as one of the steps in regression analysis.</p>","PeriodicalId":90160,"journal":{"name":"Epidemiology (Sunnyvale, Calif.)","volume":"6 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2161-1165.1000227","citationCount":"158","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology (Sunnyvale, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2161-1165.1000227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/3/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 158

Abstract

The adverse impact of ignoring multicollinearity on findings and data interpretation in regression analysis is very well documented in the statistical literature. The failure to identify and report multicollinearity could result in misleading interpretations of the results. A review of epidemiological literature in PubMed from January 2004 to December 2013, illustrated the need for a greater attention to identifying and minimizing the effect of multicollinearity in analysis of data from epidemiologic studies. We used simulated datasets and real life data from the Cameron County Hispanic Cohort to demonstrate the adverse effects of multicollinearity in the regression analysis and encourage researchers to consider the diagnostic for multicollinearity as one of the steps in regression analysis.

流行病学研究中回归分析中的多重共线性。
在回归分析中,忽略多重共线性对结果和数据解释的不利影响在统计文献中有很好的记载。未能识别和报告多重共线性可能导致对结果的误导性解释。对2004年1月至2013年12月PubMed流行病学文献的回顾表明,需要更多地关注在流行病学研究数据分析中识别和最小化多重共线性的影响。我们使用模拟数据集和来自卡梅伦县西班牙裔队列的真实生活数据来证明多重共线性在回归分析中的不利影响,并鼓励研究人员将多重共线性的诊断作为回归分析的一个步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信