Evaluation of the coarse-grained OPEP force field for protein-protein docking.

Q1 Biochemistry, Genetics and Molecular Biology
BMC Biophysics Pub Date : 2016-04-21 eCollection Date: 2016-01-01 DOI:10.1186/s13628-016-0029-y
Philipp Kynast, Philippe Derreumaux, Birgit Strodel
{"title":"Evaluation of the coarse-grained OPEP force field for protein-protein docking.","authors":"Philipp Kynast,&nbsp;Philippe Derreumaux,&nbsp;Birgit Strodel","doi":"10.1186/s13628-016-0029-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Knowing the binding site of protein-protein complexes helps understand their function and shows possible regulation sites. The ultimate goal of protein-protein docking is the prediction of the three-dimensional structure of a protein-protein complex. Docking itself only produces plausible candidate structures, which must be ranked using scoring functions to identify the structures that are most likely to occur in nature.</p><p><strong>Methods: </strong>In this work, we rescore rigid body protein-protein predictions using the optimized potential for efficient structure prediction (OPEP), which is a coarse-grained force field. Using a force field based on continuous functions rather than a grid-based scoring function allows the introduction of protein flexibility during the docking procedure. First, we produce protein-protein predictions using ZDOCK, and after energy minimization via OPEP we rank them using an OPEP-based soft rescoring function. We also train the rescoring function for different complex classes and demonstrate its improved performance for an independent dataset.</p><p><strong>Results: </strong>The trained rescoring function produces a better ranking than ZDOCK for more than 50 % of targets, rising to over 70 % when considering only enzyme/inhibitor complexes.</p><p><strong>Conclusions: </strong>This study demonstrates for the first time that energy functions derived from the coarse-grained OPEP force field can be employed to rescore predictions for protein-protein complexes.</p>","PeriodicalId":9045,"journal":{"name":"BMC Biophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13628-016-0029-y","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13628-016-0029-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 22

Abstract

Background: Knowing the binding site of protein-protein complexes helps understand their function and shows possible regulation sites. The ultimate goal of protein-protein docking is the prediction of the three-dimensional structure of a protein-protein complex. Docking itself only produces plausible candidate structures, which must be ranked using scoring functions to identify the structures that are most likely to occur in nature.

Methods: In this work, we rescore rigid body protein-protein predictions using the optimized potential for efficient structure prediction (OPEP), which is a coarse-grained force field. Using a force field based on continuous functions rather than a grid-based scoring function allows the introduction of protein flexibility during the docking procedure. First, we produce protein-protein predictions using ZDOCK, and after energy minimization via OPEP we rank them using an OPEP-based soft rescoring function. We also train the rescoring function for different complex classes and demonstrate its improved performance for an independent dataset.

Results: The trained rescoring function produces a better ranking than ZDOCK for more than 50 % of targets, rising to over 70 % when considering only enzyme/inhibitor complexes.

Conclusions: This study demonstrates for the first time that energy functions derived from the coarse-grained OPEP force field can be employed to rescore predictions for protein-protein complexes.

Abstract Image

Abstract Image

Abstract Image

蛋白质-蛋白质对接粗粒度OPEP力场评价。
背景:了解蛋白质-蛋白质复合物的结合位点有助于了解它们的功能并显示可能的调控位点。蛋白质-蛋白质对接的最终目标是预测蛋白质-蛋白质复合物的三维结构。对接本身只产生可信的候选结构,必须使用评分函数对其进行排名,以确定最可能在自然界中出现的结构。方法:在这项工作中,我们使用优化潜在有效结构预测(OPEP),这是一个粗粒度力场,我们重新获得刚体蛋白质-蛋白质预测。使用基于连续函数的力场,而不是基于网格的评分函数,可以在对接过程中引入蛋白质的灵活性。首先,我们使用ZDOCK生成蛋白质-蛋白质预测,通过OPEP进行能量最小化后,我们使用基于OPEP的软评分函数对它们进行排名。我们还训练了不同复杂类的评分函数,并展示了它在独立数据集上的改进性能。结果:训练后的评分函数对50%以上的靶标的评分优于ZDOCK,仅考虑酶/抑制剂复合物时,评分高于70%。结论:该研究首次证明了粗粒度OPEP力场的能量函数可以用于蛋白质-蛋白质复合物的重新预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Biophysics
BMC Biophysics BIOPHYSICS-
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信