How do the macrocyclic lactones kill filarial nematode larvae?

Q4 Neuroscience
Invertebrate Neuroscience Pub Date : 2016-09-01 Epub Date: 2016-06-09 DOI:10.1007/s10158-016-0190-7
Adrian J Wolstenholme, Mary J Maclean, Ruby Coates, Ciaran J McCoy, Barbara J Reaves
{"title":"How do the macrocyclic lactones kill filarial nematode larvae?","authors":"Adrian J Wolstenholme,&nbsp;Mary J Maclean,&nbsp;Ruby Coates,&nbsp;Ciaran J McCoy,&nbsp;Barbara J Reaves","doi":"10.1007/s10158-016-0190-7","DOIUrl":null,"url":null,"abstract":"<p><p>The macrocyclic lactones (MLs) are one of the few classes of drug used in the control of the human filarial infections, onchocerciasis and lymphatic filariasis, and the only one used to prevent heartworm disease in dogs and cats. Despite their importance in preventing filarial diseases, the way in which the MLs work against these parasites is unclear. In vitro measurements of nematode motility have revealed a large discrepancy between the maximum plasma concentrations achieved after drug administration and the amounts required to paralyze worms. Recent evidence has shed new light on the likely functions of the ML target, glutamate-gated chloride channels, in filarial nematodes and supports the hypothesis that the rapid clearance of microfilariae that follows treatment involves the host immune system.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"16 3","pages":"7"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-016-0190-7","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Invertebrate Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10158-016-0190-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/6/9 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 45

Abstract

The macrocyclic lactones (MLs) are one of the few classes of drug used in the control of the human filarial infections, onchocerciasis and lymphatic filariasis, and the only one used to prevent heartworm disease in dogs and cats. Despite their importance in preventing filarial diseases, the way in which the MLs work against these parasites is unclear. In vitro measurements of nematode motility have revealed a large discrepancy between the maximum plasma concentrations achieved after drug administration and the amounts required to paralyze worms. Recent evidence has shed new light on the likely functions of the ML target, glutamate-gated chloride channels, in filarial nematodes and supports the hypothesis that the rapid clearance of microfilariae that follows treatment involves the host immune system.

Abstract Image

大环内酯如何杀死丝线虫幼虫?
大环内酯(MLs)是为数不多的用于控制人类丝虫病、盘尾丝虫病和淋巴丝虫病的药物之一,也是唯一用于预防狗和猫心丝虫病的药物。尽管MLs在预防丝虫病方面很重要,但它们对抗这些寄生虫的方式尚不清楚。线虫运动的体外测量显示,在给药后达到的最大血浆浓度与使线虫瘫痪所需的量之间存在很大差异。最近的证据揭示了丝状线虫中ML靶点谷氨酸门控氯通道的可能功能,并支持了治疗后微丝状线虫的快速清除涉及宿主免疫系统的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Invertebrate Neuroscience
Invertebrate Neuroscience NEUROSCIENCES-
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Invertebrate Neurosciences publishes peer-reviewed original articles, reviews and technical reports describing recent advances in the field of invertebrate neuroscience. The journal reports on research that exploits the simplicity and experimental tractability of the invertebrate preparations to underpin fundamental advances in neuroscience. Articles published in Invertebrate Neurosciences serve to highlight properties of signalling in the invertebrate nervous system that may be exploited in the field of antiparisitics, molluscicides and insecticides. Aspects of particular interest include: Functional analysis of the invertebrate nervous system; Molecular neuropharmacology and toxicology; Neurogenetics and genomics; Functional anatomy; Neurodevelopment; Neuronal networks; Molecular and cellular mechanisms of behavior and behavioural plasticity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信