Kernel-Based Aggregation of Marker-Level Genetic Association Tests Involving Copy-Number Variation.

Yinglei Li, Patrick Breheny
{"title":"Kernel-Based Aggregation of Marker-Level Genetic Association Tests Involving Copy-Number Variation.","authors":"Yinglei Li,&nbsp;Patrick Breheny","doi":"10.3390/microarrays2030265","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic association tests involving copy-number variants (CNVs) are complicated by the fact that CNVs span multiple markers at which measurements are taken. The power of an association test at a single marker is typically low, and it is desirable to pool information across the markers spanned by the CNV. However, CNV boundaries are not known in advance, and the best way to proceed with this pooling is unclear. In this article, we propose a kernel-based method for aggregation of marker-level tests and explore several aspects of its implementation. In addition, we explore some of the theoretical aspects of marker-level test aggregation, proposing a permutation-based approach that preserves the family-wise error rate of the testing procedure, while demonstrating that several simpler alternatives fail to do so. The empirical power of the approach is studied in a number of simulations constructed from real data involving a pharmacogenomic study of gemcitabine and compares favorably with several competing approaches. </p>","PeriodicalId":56355,"journal":{"name":"Microarrays","volume":"2 3","pages":"265-83"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/microarrays2030265","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microarrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/microarrays2030265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Genetic association tests involving copy-number variants (CNVs) are complicated by the fact that CNVs span multiple markers at which measurements are taken. The power of an association test at a single marker is typically low, and it is desirable to pool information across the markers spanned by the CNV. However, CNV boundaries are not known in advance, and the best way to proceed with this pooling is unclear. In this article, we propose a kernel-based method for aggregation of marker-level tests and explore several aspects of its implementation. In addition, we explore some of the theoretical aspects of marker-level test aggregation, proposing a permutation-based approach that preserves the family-wise error rate of the testing procedure, while demonstrating that several simpler alternatives fail to do so. The empirical power of the approach is studied in a number of simulations constructed from real data involving a pharmacogenomic study of gemcitabine and compares favorably with several competing approaches.

Abstract Image

Abstract Image

Abstract Image

涉及拷贝数变异的标记水平遗传关联检测的核聚集。
涉及拷贝数变异(cnv)的遗传关联测试由于cnv跨越多个测量标记而变得复杂。在单个标记上进行关联测试的能力通常较低,因此希望在CNV所跨越的标记之间汇集信息。然而,CNV的边界是事先不知道的,进行这种池化的最佳方式也不清楚。在本文中,我们提出了一种基于核的标记级测试聚合方法,并探讨了其实现的几个方面。此外,我们探索了标记水平测试聚合的一些理论方面,提出了一种基于排列的方法,该方法保留了测试过程的家庭错误率,同时证明了一些更简单的替代方法无法做到这一点。该方法的经验力量在许多模拟中进行了研究,这些模拟来自吉西他滨药物基因组学研究的真实数据,并与几种竞争方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊介绍: High-Throughput (formerly Microarrays, ISSN 2076-3905) is a multidisciplinary peer-reviewed scientific journal that provides an advanced forum for the publication of studies reporting high-dimensional approaches and developments in Life Sciences, Chemistry and related fields. Our aim is to encourage scientists to publish their experimental and theoretical results based on high-throughput techniques as well as computational and statistical tools for data analysis and interpretation. The full experimental or methodological details must be provided so that the results can be reproduced. There is no restriction on the length of the papers. High-Throughput invites submissions covering several topics, including, but not limited to: Microarrays, DNA Sequencing, RNA Sequencing, Protein Identification and Quantification, Cell-based Approaches, Omics Technologies, Imaging, Bioinformatics, Computational Biology/Chemistry, Statistics, Integrative Omics, Drug Discovery and Development, Microfluidics, Lab-on-a-chip, Data Mining, Databases, Multiplex Assays.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信