Mendelian Randomization using Public Data from Genetic Consortia.

IF 1.2 4区 数学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
John R Thompson, Cosetta Minelli, Fabiola Del Greco M
{"title":"Mendelian Randomization using Public Data from Genetic Consortia.","authors":"John R Thompson,&nbsp;Cosetta Minelli,&nbsp;Fabiola Del Greco M","doi":"10.1515/ijb-2015-0074","DOIUrl":null,"url":null,"abstract":"<p><p>Mendelian randomization (MR) is a technique that seeks to establish causation between an exposure and an outcome using observational data. It is an instrumental variable analysis in which genetic variants are used as the instruments. Many consortia have meta-analysed genome-wide associations between variants and specific traits and made their results publicly available. Using such data, it is possible to derive genetic risk scores for one trait and to deduce the association of that same risk score with a second trait. The properties of this approach are investigated by simulation and by evaluating the potentially causal effect of birth weight on adult glucose level. In such analyses, it is important to decide whether one is interested in the risk score based on a set of estimated regression coefficients or the score based on the true underlying coefficients. MR is primarily concerned with the latter. Methods designed for the former question will under-estimate the variance if used for MR. This variance can be corrected but it needs to be done with care to avoid introducing bias. MR based on public data sources is useful and easy to perform, but care must be taken to avoid false precision or bias.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"12 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2015-0074","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2015-0074","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 54

Abstract

Mendelian randomization (MR) is a technique that seeks to establish causation between an exposure and an outcome using observational data. It is an instrumental variable analysis in which genetic variants are used as the instruments. Many consortia have meta-analysed genome-wide associations between variants and specific traits and made their results publicly available. Using such data, it is possible to derive genetic risk scores for one trait and to deduce the association of that same risk score with a second trait. The properties of this approach are investigated by simulation and by evaluating the potentially causal effect of birth weight on adult glucose level. In such analyses, it is important to decide whether one is interested in the risk score based on a set of estimated regression coefficients or the score based on the true underlying coefficients. MR is primarily concerned with the latter. Methods designed for the former question will under-estimate the variance if used for MR. This variance can be corrected but it needs to be done with care to avoid introducing bias. MR based on public data sources is useful and easy to perform, but care must be taken to avoid false precision or bias.

孟德尔随机化使用遗传协会的公共数据。
孟德尔随机化(MR)是一种利用观测数据建立暴露与结果之间因果关系的技术。它是一种工具变量分析,其中遗传变异被用作工具。许多协会对变异和特定性状之间的全基因组关联进行了荟萃分析,并公开了他们的结果。利用这些数据,就有可能推导出一种性状的遗传风险评分,并推断出同样的风险评分与另一种性状的关联。通过模拟和评估出生体重对成人血糖水平的潜在因果影响,研究了这种方法的特性。在这样的分析中,决定一个人是对基于一组估计的回归系数的风险评分感兴趣,还是对基于真实的潜在系数的评分感兴趣,这一点很重要。MR主要关注的是后者。为前一个问题设计的方法如果用于mr,会低估方差。这种方差是可以纠正的,但需要小心,以避免引入偏差。基于公共数据源的MR是有用且易于执行的,但必须注意避免错误的精度或偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biostatistics
International Journal of Biostatistics MATHEMATICAL & COMPUTATIONAL BIOLOGY-STATISTICS & PROBABILITY
CiteScore
2.10
自引率
8.30%
发文量
28
审稿时长
>12 weeks
期刊介绍: The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信