Increased levels of hyper-stable protein aggregates in plasma of older adults.

AGE Pub Date : 2016-06-01 Epub Date: 2016-05-14 DOI:10.1007/s11357-016-9919-9
Ke Xia, Hannah Trasatti, James P Wymer, Wilfredo Colón
{"title":"Increased levels of hyper-stable protein aggregates in plasma of older adults.","authors":"Ke Xia,&nbsp;Hannah Trasatti,&nbsp;James P Wymer,&nbsp;Wilfredo Colón","doi":"10.1007/s11357-016-9919-9","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins that misfold into hyper-stable/degradation-resistant species during aging may accumulate and disrupt protein homeostasis (i.e., proteostasis), thereby posing a survival risk to any organism. Using the method diagonal two-dimensional (D2D) SDS-PAGE, which separates hyper-stable SDS-resistant proteins at a proteomics level, we analyzed the plasma of healthy young (<30 years) and older (60-80 years) adults. We discovered the presence of soluble SDS-resistant protein aggregates in the plasma of older adults, but found significantly lower levels in the plasma of young adults. We identified the inflammation-related chaperone protein haptoglobin as the main component of the hyper-stable aggregates. This observation is consistent with the growing link between accumulations of protein aggregates and aging across many organisms. It is plausible higher amounts of SDS-resistant protein aggregates in the plasma of older adults may reflect a compromise in proteostasis that may potentially indicate cellular aging and/or disease risk. The results of this study have implications for further understanding the link between aging and the accumulation of protein aggregates, as well as potential for the development of aging-related biomarkers. More broadly, this novel application of D2D SDS-PAGE may be used to identify, quantify, and characterize the degradation-resistant protein aggregates in human plasma or any biological system. </p>","PeriodicalId":7632,"journal":{"name":"AGE","volume":"38 3","pages":"56"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11357-016-9919-9","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11357-016-9919-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/5/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Proteins that misfold into hyper-stable/degradation-resistant species during aging may accumulate and disrupt protein homeostasis (i.e., proteostasis), thereby posing a survival risk to any organism. Using the method diagonal two-dimensional (D2D) SDS-PAGE, which separates hyper-stable SDS-resistant proteins at a proteomics level, we analyzed the plasma of healthy young (<30 years) and older (60-80 years) adults. We discovered the presence of soluble SDS-resistant protein aggregates in the plasma of older adults, but found significantly lower levels in the plasma of young adults. We identified the inflammation-related chaperone protein haptoglobin as the main component of the hyper-stable aggregates. This observation is consistent with the growing link between accumulations of protein aggregates and aging across many organisms. It is plausible higher amounts of SDS-resistant protein aggregates in the plasma of older adults may reflect a compromise in proteostasis that may potentially indicate cellular aging and/or disease risk. The results of this study have implications for further understanding the link between aging and the accumulation of protein aggregates, as well as potential for the development of aging-related biomarkers. More broadly, this novel application of D2D SDS-PAGE may be used to identify, quantify, and characterize the degradation-resistant protein aggregates in human plasma or any biological system.

Abstract Image

Abstract Image

Abstract Image

老年人血浆中超稳定蛋白聚集体水平升高。
在衰老过程中错误折叠成超稳定/抗降解物种的蛋白质可能会积累并破坏蛋白质稳态(即蛋白质稳态),从而对任何生物体构成生存风险。采用对角二维(D2D) SDS-PAGE方法,在蛋白质组学水平上分离超稳定的sds抗性蛋白,我们分析了健康青年(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AGE
AGE 医学-老年医学
自引率
0.00%
发文量
0
审稿时长
3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信