{"title":"Genetics of Common Antipsychotic-Induced Adverse Effects.","authors":"Raymond R MacNeil, Daniel J Müller","doi":"10.1159/000445802","DOIUrl":null,"url":null,"abstract":"<p><p>The effectiveness of antipsychotic drugs is limited due to accompanying adverse effects which can pose considerable health risks and lead to patient noncompliance. Pharmacogenetics (PGx) offers a means to identify genetic biomarkers that can predict individual susceptibility to antipsychotic-induced adverse effects (AAEs), thereby improving clinical outcomes. We reviewed the literature on the PGx of common AAEs from 2010 to 2015, placing emphasis on findings that have been independently replicated and which have additionally been listed to be of interest by PGx expert panels. Gene-drug associations meeting these criteria primarily pertain to metabolic dysregulation, extrapyramidal symptoms (EPS), and tardive dyskinesia (TD). Regarding metabolic dysregulation, results have reaffirmed HTR2C as a strong candidate with potential clinical utility, while MC4R and OGFR1 gene loci have emerged as new and promising biomarkers for the prediction of weight gain. As for EPS and TD, additional evidence has accumulated in support of an association with CYP2D6 metabolizer status. Furthermore, HSPG2 and DPP6 have been identified as candidate genes with the potential to predict differential susceptibility to TD. Overall, considerable progress has been made within the field of psychiatric PGx, with inroads toward the development of clinical tools that can mitigate AAEs. Going forward, studies placing a greater emphasis on multilocus effects will need to be conducted. </p>","PeriodicalId":18957,"journal":{"name":"Molecular Neuropsychiatry","volume":"2 2","pages":"61-78"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000445802","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neuropsychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000445802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/5/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46
Abstract
The effectiveness of antipsychotic drugs is limited due to accompanying adverse effects which can pose considerable health risks and lead to patient noncompliance. Pharmacogenetics (PGx) offers a means to identify genetic biomarkers that can predict individual susceptibility to antipsychotic-induced adverse effects (AAEs), thereby improving clinical outcomes. We reviewed the literature on the PGx of common AAEs from 2010 to 2015, placing emphasis on findings that have been independently replicated and which have additionally been listed to be of interest by PGx expert panels. Gene-drug associations meeting these criteria primarily pertain to metabolic dysregulation, extrapyramidal symptoms (EPS), and tardive dyskinesia (TD). Regarding metabolic dysregulation, results have reaffirmed HTR2C as a strong candidate with potential clinical utility, while MC4R and OGFR1 gene loci have emerged as new and promising biomarkers for the prediction of weight gain. As for EPS and TD, additional evidence has accumulated in support of an association with CYP2D6 metabolizer status. Furthermore, HSPG2 and DPP6 have been identified as candidate genes with the potential to predict differential susceptibility to TD. Overall, considerable progress has been made within the field of psychiatric PGx, with inroads toward the development of clinical tools that can mitigate AAEs. Going forward, studies placing a greater emphasis on multilocus effects will need to be conducted.