Ondrej Slučiak, Hana Straková, Markus Rupp, Wilfried Gansterer
{"title":"Distributed Gram-Schmidt orthogonalization with simultaneous elements refinement.","authors":"Ondrej Slučiak, Hana Straková, Markus Rupp, Wilfried Gansterer","doi":"10.1186/s13634-016-0322-6","DOIUrl":null,"url":null,"abstract":"<p><p>We present a novel distributed QR factorization algorithm for orthogonalizing a set of vectors in a decentralized wireless sensor network. The algorithm is based on the classical Gram-Schmidt orthogonalization with all projections and inner products reformulated in a recursive manner. In contrast to existing distributed orthogonalization algorithms, all elements of the resulting matrices <b>Q</b> and <b>R</b> are computed simultaneously and refined iteratively after each transmission. Thus, the algorithm allows a trade-off between run time and accuracy. Moreover, the number of transmitted messages is considerably smaller in comparison to state-of-the-art algorithms. We thoroughly study its numerical properties and performance from various aspects. We also investigate the algorithm's robustness to link failures and provide a comparison with existing distributed QR factorization algorithms in terms of communication cost and memory requirements.</p>","PeriodicalId":49203,"journal":{"name":"Eurasip Journal on Advances in Signal Processing","volume":"2016 ","pages":"25"},"PeriodicalIF":1.7000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13634-016-0322-6","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Advances in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13634-016-0322-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/2/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3
Abstract
We present a novel distributed QR factorization algorithm for orthogonalizing a set of vectors in a decentralized wireless sensor network. The algorithm is based on the classical Gram-Schmidt orthogonalization with all projections and inner products reformulated in a recursive manner. In contrast to existing distributed orthogonalization algorithms, all elements of the resulting matrices Q and R are computed simultaneously and refined iteratively after each transmission. Thus, the algorithm allows a trade-off between run time and accuracy. Moreover, the number of transmitted messages is considerably smaller in comparison to state-of-the-art algorithms. We thoroughly study its numerical properties and performance from various aspects. We also investigate the algorithm's robustness to link failures and provide a comparison with existing distributed QR factorization algorithms in terms of communication cost and memory requirements.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.