Jennifer Mahony, Stephen R Stockdale, Barry Collins, Silvia Spinelli, Francois P Douillard, Christian Cambillau, Douwe van Sinderen
{"title":"<i>Lactococcus lactis</i> phage TP901-1 as a model for <i>Siphoviridae</i> virion assembly.","authors":"Jennifer Mahony, Stephen R Stockdale, Barry Collins, Silvia Spinelli, Francois P Douillard, Christian Cambillau, Douwe van Sinderen","doi":"10.1080/21597081.2015.1123795","DOIUrl":null,"url":null,"abstract":"<p><p>Phages infecting <i>Lactococcus lactis</i> pose a serious threat to the dairy fermentation sector. Consequently, they are among the most thoroughly characterized Gram positive-infecting phages. The majority of lactococcal phages belong to the tailed family of phages named the <i>Siphoviridae</i>. The coliphage lambda and the <i>Bacillus subtilis</i> phage SPP1 have been the predominant comparators for emerging siphophages both genomically and structurally and both phages recognize a membrane protein receptor. In contrast, the lactococcal P335 group phage TP901-1 attaches to cell wall surface polysaccharides. It is a typical \"lambdoid\" siphophage possessing a long non-contractile tail and a genomic architecture reminiscent of lambda and SPP1 despite low or undetectable sequence homology in many of its encoded products, especially those involved in host recognition. A functional analysis of the structural components of TP901-1 was undertaken based on the characterization of a series of mutants in the region encoding the capsid and tail morphogenetic elements. Through this analysis, it was possible to deduce that, despite the lack of sequence homology, the overall genomic architecture of <i>Siphoviridae</i> phages typified by functional synteny is conserved. Furthermore, a model of the TP901-1 assembly pathway was developed with potential implications for many tailed phages.</p>","PeriodicalId":8686,"journal":{"name":"Bacteriophage","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21597081.2015.1123795","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bacteriophage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21597081.2015.1123795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Phages infecting Lactococcus lactis pose a serious threat to the dairy fermentation sector. Consequently, they are among the most thoroughly characterized Gram positive-infecting phages. The majority of lactococcal phages belong to the tailed family of phages named the Siphoviridae. The coliphage lambda and the Bacillus subtilis phage SPP1 have been the predominant comparators for emerging siphophages both genomically and structurally and both phages recognize a membrane protein receptor. In contrast, the lactococcal P335 group phage TP901-1 attaches to cell wall surface polysaccharides. It is a typical "lambdoid" siphophage possessing a long non-contractile tail and a genomic architecture reminiscent of lambda and SPP1 despite low or undetectable sequence homology in many of its encoded products, especially those involved in host recognition. A functional analysis of the structural components of TP901-1 was undertaken based on the characterization of a series of mutants in the region encoding the capsid and tail morphogenetic elements. Through this analysis, it was possible to deduce that, despite the lack of sequence homology, the overall genomic architecture of Siphoviridae phages typified by functional synteny is conserved. Furthermore, a model of the TP901-1 assembly pathway was developed with potential implications for many tailed phages.