The in vivo reduction of afferent facilitation induced by low frequency electrical stimulation of the motor cortex is antagonized by cathodal direct current stimulation of the cerebellum.
{"title":"The in vivo reduction of afferent facilitation induced by low frequency electrical stimulation of the motor cortex is antagonized by cathodal direct current stimulation of the cerebellum.","authors":"Nordeyn Oulad Ben Taib, Mario Manto","doi":"10.1186/s40673-016-0053-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Low-frequency electrical stimulation to the motor cortex (LFSMC) depresses the excitability of motor circuits by long-term depression (LTD)-like effects. The interactions between LFSMC and cathodal direct current stimulation (cDCS) over the cerebellum are unknown.</p><p><strong>Methods: </strong>We assessed the corticomotor responses and the afferent facilitation of corticomotor responses during a conditioning paradigm in anaesthetized rats. We applied LFSMC at a frequency of 1 Hz and a combination of LFSMC with cDCS.</p><p><strong>Results: </strong>LFSMC significantly depressed both the corticomotor responses and the afferent facilitation of corticomotor responses. Simultaneous application of cDCS over the cerebellum antagonized the depression of corticomotor responses and cancelled the depression of the afferent facilitation.</p><p><strong>Conclusion: </strong>Our results demonstrate that cDCS of the cerebellum is a potent modulator the inhibition of the motor circuits induced by LFSMC applied in vivo. These results expand our understanding of the effects of cerebellar DCS on motor commands and open novel applications for a cerebellar remote control of LFSMC-induced neuroplasticity. We suggest that the cerebellum acts as a neuronal machine supervising not only long-term potentiation (LTP)-like effects, but also LTD-like effects in the motor cortex, two mechanisms which underlie cerebello-cerebral interactions and the cerebellar control of remote plasticity. Implications for clinical ataxiology are discussed.</p>","PeriodicalId":36752,"journal":{"name":"Cerebellum and Ataxias","volume":"3 1","pages":"15"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40673-016-0053-3","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebellum and Ataxias","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40673-016-0053-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 9
Abstract
Background: Low-frequency electrical stimulation to the motor cortex (LFSMC) depresses the excitability of motor circuits by long-term depression (LTD)-like effects. The interactions between LFSMC and cathodal direct current stimulation (cDCS) over the cerebellum are unknown.
Methods: We assessed the corticomotor responses and the afferent facilitation of corticomotor responses during a conditioning paradigm in anaesthetized rats. We applied LFSMC at a frequency of 1 Hz and a combination of LFSMC with cDCS.
Results: LFSMC significantly depressed both the corticomotor responses and the afferent facilitation of corticomotor responses. Simultaneous application of cDCS over the cerebellum antagonized the depression of corticomotor responses and cancelled the depression of the afferent facilitation.
Conclusion: Our results demonstrate that cDCS of the cerebellum is a potent modulator the inhibition of the motor circuits induced by LFSMC applied in vivo. These results expand our understanding of the effects of cerebellar DCS on motor commands and open novel applications for a cerebellar remote control of LFSMC-induced neuroplasticity. We suggest that the cerebellum acts as a neuronal machine supervising not only long-term potentiation (LTP)-like effects, but also LTD-like effects in the motor cortex, two mechanisms which underlie cerebello-cerebral interactions and the cerebellar control of remote plasticity. Implications for clinical ataxiology are discussed.