Fast Sequential Creation of Random Realizations of Degree Sequences.

Q3 Mathematics
Internet Mathematics Pub Date : 2016-01-01 Epub Date: 2016-03-24 DOI:10.1080/15427951.2016.1164768
Brian Cloteaux
{"title":"Fast Sequential Creation of Random Realizations of Degree Sequences.","authors":"Brian Cloteaux","doi":"10.1080/15427951.2016.1164768","DOIUrl":null,"url":null,"abstract":"<p><p>We examine the problem of creating random realizations of very large degree sequences. Although fast in practice, the Markov chain Monte Carlo (MCMC) method for selecting a realization has limited usefulness for creating large graphs because of memory constraints. Instead, we focus on sequential importance sampling (SIS) schemes for random graph creation. A difficulty with SIS schemes is assuring that they terminate in a reasonable amount of time. We introduce a new sampling method by which we guarantee termination while achieving speed comparable to the MCMC method.</p>","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"12 3","pages":"205-219"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2016.1164768","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2016.1164768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/3/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 16

Abstract

We examine the problem of creating random realizations of very large degree sequences. Although fast in practice, the Markov chain Monte Carlo (MCMC) method for selecting a realization has limited usefulness for creating large graphs because of memory constraints. Instead, we focus on sequential importance sampling (SIS) schemes for random graph creation. A difficulty with SIS schemes is assuring that they terminate in a reasonable amount of time. We introduce a new sampling method by which we guarantee termination while achieving speed comparable to the MCMC method.

Abstract Image

Abstract Image

Abstract Image

度序列随机实现的快速顺序创建。
我们研究了创建非常大度序列的随机实现的问题。虽然在实践中速度很快,但由于内存限制,用于选择实现的马尔可夫链蒙特卡罗(MCMC)方法在创建大型图形时用处有限。相反,我们专注于随机图创建的顺序重要抽样(SIS)方案。SIS方案的一个难点是确保它们在合理的时间内终止。我们介绍了一种新的采样方法,在保证终止的同时达到与MCMC方法相当的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Internet Mathematics
Internet Mathematics Mathematics-Applied Mathematics
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信