Flexible analysis of digital PCR experiments using generalized linear mixed models

Q1 Biochemistry, Genetics and Molecular Biology
Matthijs Vynck , Jo Vandesompele , Nele Nijs , Björn Menten , Ariane De Ganck , Olivier Thas
{"title":"Flexible analysis of digital PCR experiments using generalized linear mixed models","authors":"Matthijs Vynck ,&nbsp;Jo Vandesompele ,&nbsp;Nele Nijs ,&nbsp;Björn Menten ,&nbsp;Ariane De Ganck ,&nbsp;Olivier Thas","doi":"10.1016/j.bdq.2016.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>The use of digital PCR for quantification of nucleic acids is rapidly growing. A major drawback remains the lack of flexible data analysis tools. Published analysis approaches are either tailored to specific problem settings or fail to take into account sources of variability. We propose the generalized linear mixed models framework as a flexible tool for analyzing a wide range of experiments. We also introduce a method for estimating reference gene stability to improve accuracy and precision of copy number and relative expression estimates. We demonstrate the usefulness of the methodology on a complex experimental setup.</p></div>","PeriodicalId":38073,"journal":{"name":"Biomolecular Detection and Quantification","volume":"9 ","pages":"Pages 1-13"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bdq.2016.06.001","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular Detection and Quantification","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214753516300146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 13

Abstract

The use of digital PCR for quantification of nucleic acids is rapidly growing. A major drawback remains the lack of flexible data analysis tools. Published analysis approaches are either tailored to specific problem settings or fail to take into account sources of variability. We propose the generalized linear mixed models framework as a flexible tool for analyzing a wide range of experiments. We also introduce a method for estimating reference gene stability to improve accuracy and precision of copy number and relative expression estimates. We demonstrate the usefulness of the methodology on a complex experimental setup.

Abstract Image

Abstract Image

Abstract Image

用广义线性混合模型灵活分析数字PCR实验
用于核酸定量的数字PCR的使用正在迅速增长。一个主要的缺点仍然是缺乏灵活的数据分析工具。已发表的分析方法要么是针对特定的问题设置量身定制的,要么是没有考虑到可变性的来源。我们提出广义线性混合模型框架作为分析广泛实验的灵活工具。我们还介绍了一种估计内参基因稳定性的方法,以提高拷贝数和相对表达估计的准确性和精密度。我们在一个复杂的实验装置上证明了该方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomolecular Detection and Quantification
Biomolecular Detection and Quantification Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
14.20
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信