{"title":"Multivalent and Multipathogen Viral Vector Vaccines.","authors":"Katharina B Lauer, Ray Borrow, Thomas J Blanchard","doi":"10.1128/CVI.00298-16","DOIUrl":null,"url":null,"abstract":"<p><p>The presentation and delivery of antigens are crucial for inducing immunity and, desirably, lifelong protection. Recombinant viral vectors-proven safe and successful in veterinary vaccine applications-are ideal shuttles to deliver foreign proteins to induce an immune response with protective antibody levels by mimicking natural infection. Some examples of viral vectors are adenoviruses, measles virus, or poxviruses. The required attributes to qualify as a vaccine vector are as follows: stable insertion of coding sequences into the genome, induction of a protective immune response, a proven safety record, and the potential for large-scale production. The need to develop new vaccines for infectious diseases, increase vaccine accessibility, reduce health costs, and simplify overloaded immunization schedules has driven the idea to combine antigens from the same or various pathogens. To protect effectively, some vaccines require multiple antigens of one pathogen or different pathogen serotypes/serogroups in combination (multivalent or polyvalent vaccines). Future multivalent vaccine candidates are likely to be required for complex diseases like malaria and HIV. Other novel strategies propose an antigen combination of different pathogens to protect against several diseases at once (multidisease or multipathogen vaccines).</p>","PeriodicalId":10271,"journal":{"name":"Clinical and Vaccine Immunology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5216423/pdf/e00298-16.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Vaccine Immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/CVI.00298-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
The presentation and delivery of antigens are crucial for inducing immunity and, desirably, lifelong protection. Recombinant viral vectors-proven safe and successful in veterinary vaccine applications-are ideal shuttles to deliver foreign proteins to induce an immune response with protective antibody levels by mimicking natural infection. Some examples of viral vectors are adenoviruses, measles virus, or poxviruses. The required attributes to qualify as a vaccine vector are as follows: stable insertion of coding sequences into the genome, induction of a protective immune response, a proven safety record, and the potential for large-scale production. The need to develop new vaccines for infectious diseases, increase vaccine accessibility, reduce health costs, and simplify overloaded immunization schedules has driven the idea to combine antigens from the same or various pathogens. To protect effectively, some vaccines require multiple antigens of one pathogen or different pathogen serotypes/serogroups in combination (multivalent or polyvalent vaccines). Future multivalent vaccine candidates are likely to be required for complex diseases like malaria and HIV. Other novel strategies propose an antigen combination of different pathogens to protect against several diseases at once (multidisease or multipathogen vaccines).
期刊介绍:
Cessation. First launched as Clinical and Diagnostic Laboratory Immunology (CDLI) in 1994, CVI published articles that enhanced the understanding of the immune response in health and disease and after vaccination by showcasing discoveries in clinical, laboratory, and vaccine immunology. CVI was committed to advancing all aspects of vaccine research and immunization, including discovery of new vaccine antigens and vaccine design, development and evaluation of vaccines in animal models and in humans, characterization of immune responses and mechanisms of vaccine action, controlled challenge studies to assess vaccine efficacy, study of vaccine vectors, adjuvants, and immunomodulators, immune correlates of protection, and clinical trials.