LMDS-based approach for efficient top-k local ligand-binding site search.

Pub Date : 2015-01-01 DOI:10.1504/ijdmb.2015.070066
Sungchul Kim, Lee Sael, Hwanjo Yu
{"title":"LMDS-based approach for efficient top-k local ligand-binding site search.","authors":"Sungchul Kim,&nbsp;Lee Sael,&nbsp;Hwanjo Yu","doi":"10.1504/ijdmb.2015.070066","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we propose a LMDS-based binding-site search for improving the search speed of the Patch-Surfer method. Patch-Surfer is efficient in recognition of protein-ligand binding partners, further speedup is necessary to address multiple-user access. Futher speedup is realised by exploiting Landmark Multi-Dimensional Scaling (LMDS). It computes embedding coordinates for data points based on their distances from landmark points. When selecting the landmark points, we adopt two approaches--random and greedy selection. Our method approximately retrieves top-k results and the accuracy increases as we exploit more landmark points. Although two landmark selection approaches show comparable results, the greedy selection shows the best performance when the number of landmark points is large. Using our method, the searching time is reduced up to 99% and it retrieves almost 80% of exact top-k results. Additionally, LMDS-based binding-site search+ improves the retrieval accuracy from 80% to 95% while sacrificing the speedup ratio from 99% to 90% compared to Patch-Surfer.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijdmb.2015.070066","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/ijdmb.2015.070066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we propose a LMDS-based binding-site search for improving the search speed of the Patch-Surfer method. Patch-Surfer is efficient in recognition of protein-ligand binding partners, further speedup is necessary to address multiple-user access. Futher speedup is realised by exploiting Landmark Multi-Dimensional Scaling (LMDS). It computes embedding coordinates for data points based on their distances from landmark points. When selecting the landmark points, we adopt two approaches--random and greedy selection. Our method approximately retrieves top-k results and the accuracy increases as we exploit more landmark points. Although two landmark selection approaches show comparable results, the greedy selection shows the best performance when the number of landmark points is large. Using our method, the searching time is reduced up to 99% and it retrieves almost 80% of exact top-k results. Additionally, LMDS-based binding-site search+ improves the retrieval accuracy from 80% to 95% while sacrificing the speedup ratio from 99% to 90% compared to Patch-Surfer.

分享
查看原文
基于lmds的top-k局部配体结合位点高效搜索方法。
在这项工作中,我们提出了一种基于lmds的结合位点搜索,以提高Patch-Surfer方法的搜索速度。Patch-Surfer在识别蛋白质配体结合伙伴方面是有效的,进一步的加速是必要的,以解决多用户访问。通过利用Landmark Multi-Dimensional Scaling (LMDS)实现进一步的加速。它根据数据点到地标点的距离计算数据点的嵌入坐标。在选择地标点时,我们采用随机选择和贪婪选择两种方法。我们的方法近似地检索top-k结果,并且随着我们利用更多的地标点,精度增加。虽然两种地标选择方法的结果具有可比性,但当地标点数量较大时,贪婪选择方法表现出最好的性能。使用我们的方法,搜索时间减少了99%,并且检索了几乎80%的精确top-k结果。此外,与Patch-Surfer相比,基于lmds的结合位点搜索将检索准确率从80%提高到95%,同时牺牲了从99%到90%的加速比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信