{"title":"Automatic extraction of reference gene from literature in plants based on texting mining.","authors":"Lin He, Gengyu Shen, Fei Li, Shuiqing Huang","doi":"10.1504/ijdmb.2015.070063","DOIUrl":null,"url":null,"abstract":"<p><p>Real-Time Quantitative Polymerase Chain Reaction (qRT-PCR) is widely used in biological research. It is a key to the availability of qRT-PCR experiment to select a stable reference gene. However, selecting an appropriate reference gene usually requires strict biological experiment for verification with high cost in the process of selection. Scientific literatures have accumulated a lot of achievements on the selection of reference gene. Therefore, mining reference genes under specific experiment environments from literatures can provide quite reliable reference genes for similar qRT-PCR experiments with the advantages of reliability, economic and efficiency. An auxiliary reference gene discovery method from literature is proposed in this paper which integrated machine learning, natural language processing and text mining approaches. The validity tests showed that this new method has a better precision and recall on the extraction of reference genes and their environments.</p>","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"12 4","pages":"400-16"},"PeriodicalIF":0.2000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijdmb.2015.070063","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/ijdmb.2015.070063","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Real-Time Quantitative Polymerase Chain Reaction (qRT-PCR) is widely used in biological research. It is a key to the availability of qRT-PCR experiment to select a stable reference gene. However, selecting an appropriate reference gene usually requires strict biological experiment for verification with high cost in the process of selection. Scientific literatures have accumulated a lot of achievements on the selection of reference gene. Therefore, mining reference genes under specific experiment environments from literatures can provide quite reliable reference genes for similar qRT-PCR experiments with the advantages of reliability, economic and efficiency. An auxiliary reference gene discovery method from literature is proposed in this paper which integrated machine learning, natural language processing and text mining approaches. The validity tests showed that this new method has a better precision and recall on the extraction of reference genes and their environments.
期刊介绍:
Mining bioinformatics data is an emerging area at the intersection between bioinformatics and data mining. The objective of IJDMB is to facilitate collaboration between data mining researchers and bioinformaticians by presenting cutting edge research topics and methodologies in the area of data mining for bioinformatics. This perspective acknowledges the inter-disciplinary nature of research in data mining and bioinformatics and provides a unified forum for researchers/practitioners/students/policy makers to share the latest research and developments in this fast growing multi-disciplinary research area.