An Application of Endpoint Detection to Bivariate Data in Tau-Path Order.

Srinath Sampath, Joseph S Verducci
{"title":"An Application of Endpoint Detection to Bivariate Data in Tau-Path Order.","authors":"Srinath Sampath,&nbsp;Joseph S Verducci","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The Fligner and Verducci (1988) multistage model for rankings is modified to create the moving average maximum likelihood estimator (MAMLE), a locally smooth estimator that measures stage-wise agreement between two long ranked lists, and provides a stopping rule for the detection of the endpoint of agreement. An application of this MAMLE stopping rule to bivariate data set in tau-path order (Yu, Verducci and Blower (2011)) is discussed. Data from the National Cancer Institute measuring associations between gene expression and compound potency are studied using this application, providing insights into the length of the relationship between the variables.</p>","PeriodicalId":87345,"journal":{"name":"Proceedings. American Statistical Association. Annual Meeting","volume":"2014 ","pages":"2754-2758"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4557965/pdf/nihms717109.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. American Statistical Association. Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Fligner and Verducci (1988) multistage model for rankings is modified to create the moving average maximum likelihood estimator (MAMLE), a locally smooth estimator that measures stage-wise agreement between two long ranked lists, and provides a stopping rule for the detection of the endpoint of agreement. An application of this MAMLE stopping rule to bivariate data set in tau-path order (Yu, Verducci and Blower (2011)) is discussed. Data from the National Cancer Institute measuring associations between gene expression and compound potency are studied using this application, providing insights into the length of the relationship between the variables.

Abstract Image

Abstract Image

端点检测在tau路径序列双变量数据中的应用。
Fligner和Verducci(1988)对排名的多阶段模型进行了修改,以创建移动平均最大似然估计器(MAMLE),这是一种局部平滑估计器,用于测量两个长排名列表之间的阶段一致性,并提供了检测一致性端点的停止规则。本文讨论了该MAMLE停止规则在tau路径阶双变量数据集中的应用(Yu, Verducci and Blower(2011))。来自国家癌症研究所的数据测量基因表达和化合物效力之间的关联,使用该应用程序进行了研究,提供了对变量之间关系长度的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信