Design and implementation of a hybrid MPI-CUDA model for the Smith-Waterman algorithm.

Pub Date : 2015-01-01 DOI:10.1504/ijdmb.2015.069710
Heba Khaled, Hossam El Deen Mostafa Faheem, Rania El Gohary
{"title":"Design and implementation of a hybrid MPI-CUDA model for the Smith-Waterman algorithm.","authors":"Heba Khaled,&nbsp;Hossam El Deen Mostafa Faheem,&nbsp;Rania El Gohary","doi":"10.1504/ijdmb.2015.069710","DOIUrl":null,"url":null,"abstract":"<p><p>This paper provides a novel hybrid model for solving the multiple pair-wise sequence alignment problem combining message passing interface and CUDA, the parallel computing platform and programming model invented by NVIDIA. The proposed model targets homogeneous cluster nodes equipped with similar Graphical Processing Unit (GPU) cards. The model consists of the Master Node Dispatcher (MND) and the Worker GPU Nodes (WGN). The MND distributes the workload among the cluster working nodes and then aggregates the results. The WGN performs the multiple pair-wise sequence alignments using the Smith-Waterman algorithm. We also propose a modified implementation to the Smith-Waterman algorithm based on computing the alignment matrices row-wise. The experimental results demonstrate a considerable reduction in the running time by increasing the number of the working GPU nodes. The proposed model achieved a performance of about 12 Giga cell updates per second when we tested against the SWISS-PROT protein knowledge base running on four nodes.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijdmb.2015.069710","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/ijdmb.2015.069710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper provides a novel hybrid model for solving the multiple pair-wise sequence alignment problem combining message passing interface and CUDA, the parallel computing platform and programming model invented by NVIDIA. The proposed model targets homogeneous cluster nodes equipped with similar Graphical Processing Unit (GPU) cards. The model consists of the Master Node Dispatcher (MND) and the Worker GPU Nodes (WGN). The MND distributes the workload among the cluster working nodes and then aggregates the results. The WGN performs the multiple pair-wise sequence alignments using the Smith-Waterman algorithm. We also propose a modified implementation to the Smith-Waterman algorithm based on computing the alignment matrices row-wise. The experimental results demonstrate a considerable reduction in the running time by increasing the number of the working GPU nodes. The proposed model achieved a performance of about 12 Giga cell updates per second when we tested against the SWISS-PROT protein knowledge base running on four nodes.

分享
查看原文
Smith-Waterman算法的MPI-CUDA混合模型的设计与实现。
将消息传递接口与NVIDIA公司发明的并行计算平台和编程模型CUDA相结合,提出了一种解决多对序列对齐问题的新型混合模型。该模型的目标是配备类似图形处理单元(GPU)卡的同构集群节点。该模型由主节点调度器(MND)和工作GPU节点(WGN)组成。MND在集群工作节点之间分配工作负载,然后聚合结果。WGN使用Smith-Waterman算法执行多个成对序列比对。我们还提出了一种基于逐行计算对齐矩阵的Smith-Waterman算法的改进实现。实验结果表明,通过增加工作GPU节点的数量,可以显著减少运行时间。当我们对运行在四个节点上的SWISS-PROT蛋白质知识库进行测试时,所提出的模型实现了每秒约12千兆细胞更新的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信