Estimating Population Exposure to Fine Particulate Matter in the Conterminous U.S. using Shape Function-based Spatiotemporal Interpolation Method: A County Level Analysis.

Lixin Li, Jie Tian, Xingyou Zhang, James B Holt, Reinhard Piltner
{"title":"Estimating Population Exposure to Fine Particulate Matter in the Conterminous U.S. using Shape Function-based Spatiotemporal Interpolation Method: A County Level Analysis.","authors":"Lixin Li,&nbsp;Jie Tian,&nbsp;Xingyou Zhang,&nbsp;James B Holt,&nbsp;Reinhard Piltner","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This paper investigates spatiotemporal interpolation methods for the application of air pollution assessment. The air pollutant of interest in this paper is fine particulate matter PM<sub>2.5</sub>. The choice of the time scale is investigated when applying the shape function-based method. It is found that the measurement scale of the time dimension has an impact on the quality of interpolation results. Based upon the result of 10-fold cross validation, the most effective time scale out of four experimental ones was selected for the PM<sub>2.5</sub> interpolation. The paper also estimates the population exposure to the ambient air pollution of PM<sub>2.5</sub> at the county-level in the contiguous U.S. in 2009. The interpolated county-level PM<sub>2.5</sub> has been linked to 2009 population data and the population with a risky PM<sub>2.5</sub> exposure has been estimated. The risky PM<sub>2.5</sub> exposure means the PM<sub>2.5</sub> concentration exceeding the National Ambient Air Quality Standards. The geographic distribution of the counties with a risky PM<sub>2.5</sub> exposure is visualized. This work is essential to understanding the associations between ambient air pollution exposure and population health outcomes.</p>","PeriodicalId":91079,"journal":{"name":"GSTF international journal on computing","volume":"1 4","pages":"24-30"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4583366/pdf/nihms717903.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GSTF international journal on computing","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates spatiotemporal interpolation methods for the application of air pollution assessment. The air pollutant of interest in this paper is fine particulate matter PM2.5. The choice of the time scale is investigated when applying the shape function-based method. It is found that the measurement scale of the time dimension has an impact on the quality of interpolation results. Based upon the result of 10-fold cross validation, the most effective time scale out of four experimental ones was selected for the PM2.5 interpolation. The paper also estimates the population exposure to the ambient air pollution of PM2.5 at the county-level in the contiguous U.S. in 2009. The interpolated county-level PM2.5 has been linked to 2009 population data and the population with a risky PM2.5 exposure has been estimated. The risky PM2.5 exposure means the PM2.5 concentration exceeding the National Ambient Air Quality Standards. The geographic distribution of the counties with a risky PM2.5 exposure is visualized. This work is essential to understanding the associations between ambient air pollution exposure and population health outcomes.

使用基于形状函数的时空插值方法估算美国连续地区细颗粒物暴露量:县级分析。
研究了时空插值方法在大气污染评价中的应用。本文关注的空气污染物是细颗粒物PM2.5。研究了应用基于形状函数的方法时标度的选择。研究发现,时间维的测量尺度对插值结果的质量有影响。根据10倍交叉验证的结果,在4个实验时间尺度中选择最有效的时间尺度进行PM2.5插值。本文还估算了2009年美国相邻县域人口暴露于PM2.5环境空气污染的情况。插入的县级PM2.5与2009年的人口数据相关联,并对PM2.5暴露风险人口进行了估计。PM2.5危险暴露是指PM2.5浓度超过国家环境空气质量标准。PM2.5暴露风险县的地理分布是可视化的。这项工作对于了解环境空气污染暴露与人口健康结果之间的关系至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信