A V Gannesen, M V Zhurina, M A Veselova, I A Khmel, V K Plakunov
{"title":"[Regulation of Biofilm Formation by Pseudomonas chlororaphis in an vitro System].","authors":"A V Gannesen, M V Zhurina, M A Veselova, I A Khmel, V K Plakunov","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The mutants of Pseudomonas chlororaphis 449 with completely or partially suppressed accumulation of N-acyl homoserine lactones exhibited the absence or a pronounced decrease of their capacity for stimulation of biofilm growth in the presence of azithromycin. Biofilms of the wild type strain preformed in the presence of the stimulatory azithromycin concentrations exhibited more intense staining with a polysaccharide-specific dye 1,9-dimethyl methylene blue (DMMB) and were more resistant to heat shock. These findings indicate accumulation of the structural matrix polysaccharides, which play a protective role under the conditions of thermal shock. Extremely low azithromycin concentrations (0.001-0.01 μg/mL) inhibit biofilm formation by P. chlororaphis 449 and P. chlororaphis 66 with suppression of the synthesis of DMMB-staining polysaccharides.</p>","PeriodicalId":18732,"journal":{"name":"Mikrobiologiia","volume":"84 3","pages":"281-90"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mikrobiologiia","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The mutants of Pseudomonas chlororaphis 449 with completely or partially suppressed accumulation of N-acyl homoserine lactones exhibited the absence or a pronounced decrease of their capacity for stimulation of biofilm growth in the presence of azithromycin. Biofilms of the wild type strain preformed in the presence of the stimulatory azithromycin concentrations exhibited more intense staining with a polysaccharide-specific dye 1,9-dimethyl methylene blue (DMMB) and were more resistant to heat shock. These findings indicate accumulation of the structural matrix polysaccharides, which play a protective role under the conditions of thermal shock. Extremely low azithromycin concentrations (0.001-0.01 μg/mL) inhibit biofilm formation by P. chlororaphis 449 and P. chlororaphis 66 with suppression of the synthesis of DMMB-staining polysaccharides.