{"title":"[Root Nodule Bacteria Sinorhizobium meliloti: Tolerance to Salinity and Bacterial Genetic Determinants].","authors":"M L Roumiantseva, V S Muntyan","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The theoretical and experimental data on salt tolerance of root nodule bacteria Sinorhizobium meliloti (Ensifer meliloti), an alfalfa symbiont, and on genetic determination of this feature are reviewed. Extensive data on the genes affecting adaptation of proteobacteria are provided, as well as on the groups of genes with activity depending on the osmolarity of the medium. Structural and functional polymorphism of the bet genes involved in betaine synthesis and transport in S. meliloti is discussed. The phenotypic and. genotypic polymorphism in 282 environmental rhizobial strains isolated from the centers of alfalfa diversity affected by aridity and salinity is discussed. The isolates from the Aral Sea area and northern Caucasus were shown to possess the betC gene represented by two types of alleles: the dominant A-type allele found in Rm 1021 and the less common divergent E-type allele, which was revealed in regions at the frequencies at the frequencies of 0.35 and 0.48, respectively. In the isolates with the salt-tolerant phenotype, which were isolated from root nodules and subsequently formed less effective symbioses with alfalfa, the frequency of E-type alleles was 2.5 times higher. Analysis of the nucleotide and amino acid sequences of the E-type allele of the betC gene revealed that establishment of this allele in the population was a result of positive selection. It is concluded that diversification of the functionally diverse bet genes occurring in S. meliloti affects the salt tolerance and symbiotic effectivity of rhizobia.</p>","PeriodicalId":18732,"journal":{"name":"Mikrobiologiia","volume":"84 3","pages":"263-80"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mikrobiologiia","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The theoretical and experimental data on salt tolerance of root nodule bacteria Sinorhizobium meliloti (Ensifer meliloti), an alfalfa symbiont, and on genetic determination of this feature are reviewed. Extensive data on the genes affecting adaptation of proteobacteria are provided, as well as on the groups of genes with activity depending on the osmolarity of the medium. Structural and functional polymorphism of the bet genes involved in betaine synthesis and transport in S. meliloti is discussed. The phenotypic and. genotypic polymorphism in 282 environmental rhizobial strains isolated from the centers of alfalfa diversity affected by aridity and salinity is discussed. The isolates from the Aral Sea area and northern Caucasus were shown to possess the betC gene represented by two types of alleles: the dominant A-type allele found in Rm 1021 and the less common divergent E-type allele, which was revealed in regions at the frequencies at the frequencies of 0.35 and 0.48, respectively. In the isolates with the salt-tolerant phenotype, which were isolated from root nodules and subsequently formed less effective symbioses with alfalfa, the frequency of E-type alleles was 2.5 times higher. Analysis of the nucleotide and amino acid sequences of the E-type allele of the betC gene revealed that establishment of this allele in the population was a result of positive selection. It is concluded that diversification of the functionally diverse bet genes occurring in S. meliloti affects the salt tolerance and symbiotic effectivity of rhizobia.