{"title":"The novel double-folded structure of d(GCATGCATGC): a possible model for triplet-repeat sequences.","authors":"Arunachalam Thirugnanasambandam, Selvam Karthik, Pradeep Kumar Mandal, Namasivayam Gautham","doi":"10.1107/S1399004715013930","DOIUrl":null,"url":null,"abstract":"<p><p>The structure of the decadeoxyribonucleotide d(GCATGCATGC) is presented at a resolution of 1.8 Å. The decamer adopts a novel double-folded structure in which the direction of progression of the backbone changes at the two thymine residues. Intra-strand stacking interactions (including an interaction between the endocylic O atom of a ribose moiety and the adjacent purine base), hydrogen bonds and cobalt-ion interactions stabilize the double-folded structure of the single strand. Two such double-folded strands come together in the crystal to form a dimer. Inter-strand Watson-Crick hydrogen bonds form four base pairs. This portion of the decamer structure is similar to that observed in other previously reported oligonucleotide structures and has been dubbed a `bi-loop'. Both the double-folded single-strand structure, as well as the dimeric bi-loop structure, serve as starting points to construct models for triplet-repeat DNA sequences, which have been implicated in many human diseases.</p>","PeriodicalId":7047,"journal":{"name":"Acta crystallographica. Section D, Biological crystallography","volume":"71 Pt 10","pages":"2119-26"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S1399004715013930","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica. Section D, Biological crystallography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1107/S1399004715013930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/9/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The structure of the decadeoxyribonucleotide d(GCATGCATGC) is presented at a resolution of 1.8 Å. The decamer adopts a novel double-folded structure in which the direction of progression of the backbone changes at the two thymine residues. Intra-strand stacking interactions (including an interaction between the endocylic O atom of a ribose moiety and the adjacent purine base), hydrogen bonds and cobalt-ion interactions stabilize the double-folded structure of the single strand. Two such double-folded strands come together in the crystal to form a dimer. Inter-strand Watson-Crick hydrogen bonds form four base pairs. This portion of the decamer structure is similar to that observed in other previously reported oligonucleotide structures and has been dubbed a `bi-loop'. Both the double-folded single-strand structure, as well as the dimeric bi-loop structure, serve as starting points to construct models for triplet-repeat DNA sequences, which have been implicated in many human diseases.