Xin-Yao Li , Ya-Fang Guo , Yong Mao , Xiao-Zhi Tang
{"title":"Nucleation and growth of {101¯1} compression twin in Mg single crystals","authors":"Xin-Yao Li , Ya-Fang Guo , Yong Mao , Xiao-Zhi Tang","doi":"10.1016/j.ijplas.2022.103437","DOIUrl":null,"url":null,"abstract":"<div><p>The <span><math><mrow><mo>{</mo><mrow><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>1</mn></mrow><mo>}</mo></mrow></math></span> compression twin is more commonly observed under <em>a</em>-axis tension rather than <em>c</em>-axis compression in hexagonal close-packed (hcp) Mg single crystals both in experiments and atomistic simulations. In this work, molecular dynamics simulations are applied to investigate the nucleation and growth of <span><math><mrow><mo>{</mo><mrow><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>1</mn></mrow><mo>}</mo></mrow></math></span> twin in Mg single crystal, which is crucial for a comprehensive understanding of the plasticity of hcp metals. A <span><math><mrow><mo>{</mo><mrow><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>1</mn></mrow><mo>}</mo></mrow></math></span> twin embryo with 4-layer height is found to be naturally nucleated at the free surface via 〈a〉 dislocation slip in Mg single crystal. The nucleation of the <span><math><mrow><mo>{</mo><mrow><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>1</mn></mrow><mo>}</mo></mrow></math></span> twin embryo involves the cross-slip of the nucleated prismatic 〈a〉 dislocation onto pyramidal <span><math><mrow><mo>{</mo><mrow><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>1</mn></mrow><mo>}</mo></mrow></math></span> plane, which is achieved by slip of 〈a〉 dislocation and shear along the <span><math><mrow><mo>〈</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>2</mn><mo>〉</mo></mrow></math></span> direction. Basal stacking faults (SFs) forms in twin embryo and grows with the migration of <span><math><mrow><mo>{</mo><mrow><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>1</mn></mrow><mo>}</mo></mrow></math></span> twin boundary. The formation of basal SFs in <span><math><mrow><mo>{</mo><mrow><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>1</mn></mrow><mo>}</mo></mrow></math></span> twin embryo can greatly reduce the required atomic shuffling in <span><math><mrow><mo>〈</mo><mn>1</mn><mover><mn>2</mn><mo>¯</mo></mover><mn>10</mn><mo>〉</mo></mrow></math></span> direction, thus facilitate the development of a <span><math><mrow><mo>{</mo><mrow><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>1</mn></mrow><mo>}</mo></mrow></math></span> twin embryo. The basal SFs inside <span><math><mrow><mo>{</mo><mrow><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>1</mn></mrow><mo>}</mo></mrow></math></span> twin are anomalous SFs without dislocation activities involved, thus the <span><math><mrow><mo>{</mo><mrow><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>1</mn></mrow><mo>}</mo></mrow></math></span> twinning shear is not influenced by the existence of basal SFs, which is consistent with the irrational shear of 2-layer twinning dislocation.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"158 ","pages":"Article 103437"},"PeriodicalIF":12.8000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641922002157","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 3
Abstract
The compression twin is more commonly observed under a-axis tension rather than c-axis compression in hexagonal close-packed (hcp) Mg single crystals both in experiments and atomistic simulations. In this work, molecular dynamics simulations are applied to investigate the nucleation and growth of twin in Mg single crystal, which is crucial for a comprehensive understanding of the plasticity of hcp metals. A twin embryo with 4-layer height is found to be naturally nucleated at the free surface via 〈a〉 dislocation slip in Mg single crystal. The nucleation of the twin embryo involves the cross-slip of the nucleated prismatic 〈a〉 dislocation onto pyramidal plane, which is achieved by slip of 〈a〉 dislocation and shear along the direction. Basal stacking faults (SFs) forms in twin embryo and grows with the migration of twin boundary. The formation of basal SFs in twin embryo can greatly reduce the required atomic shuffling in direction, thus facilitate the development of a twin embryo. The basal SFs inside twin are anomalous SFs without dislocation activities involved, thus the twinning shear is not influenced by the existence of basal SFs, which is consistent with the irrational shear of 2-layer twinning dislocation.
在实验和原子模拟中,在六方密排(hcp) Mg单晶中,{101¯1}压缩孪晶更常在a轴张力下而不是c轴压缩下观察到。本文采用分子动力学模拟方法研究了Mg单晶中{101¯1}孪晶的形核和生长,这对全面了解hcp金属的塑性至关重要。在Mg单晶中,通过< A >位错滑移在自由表面自然形核形成了一个4层高的{101¯1}孪晶胚。{101¯1}孪晶胚的形核过程涉及到形核棱柱形< a >位错在{101¯1}锥体面上的交叉滑移,这是通过< a >位错沿< 101¯2 >方向的滑移和剪切实现的。基底层错(SFs)在孪晶胚中形成,并随着{101¯1}孪晶边界的迁移而生长。{101¯1}双胞胎胚胎中基生sf的形成可以大大减少< 12¯10 >方向所需的原子洗选,从而有利于{101¯1}双胞胎胚胎的发育。{101¯1}孪晶内部的基底sf是异常sf,没有位错活动,因此{101¯1}孪晶剪切不受基底sf存在的影响,这与2层孪晶位错的不合理剪切是一致的。
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.