Influence of parameter values on the oscillation sensitivities of two p53-Mdm2 models.

Systems and Synthetic Biology Pub Date : 2015-09-01 Epub Date: 2015-06-05 DOI:10.1007/s11693-015-9173-y
Christian E Cuba, Alexander R Valle, Giancarlo Ayala-Charca, Elizabeth R Villota, Alberto M Coronado
{"title":"Influence of parameter values on the oscillation sensitivities of two p53-Mdm2 models.","authors":"Christian E Cuba,&nbsp;Alexander R Valle,&nbsp;Giancarlo Ayala-Charca,&nbsp;Elizabeth R Villota,&nbsp;Alberto M Coronado","doi":"10.1007/s11693-015-9173-y","DOIUrl":null,"url":null,"abstract":"<p><p>Biomolecular networks that present oscillatory behavior are ubiquitous in nature. While some design principles for robust oscillations have been identified, it is not well understood how these oscillations are affected when the kinetic parameters are constantly changing or are not precisely known, as often occurs in cellular environments. Many models of diverse complexity level, for systems such as circadian rhythms, cell cycle or the p53 network, have been proposed. Here we assess the influence of hundreds of different parameter sets on the sensitivities of two configurations of a well-known oscillatory system, the p53 core network. We show that, for both models and all parameter sets, the parameter related to the p53 positive feedback, i.e. self-promotion, is the only one that presents sizeable sensitivities on extrema, periods and delay. Moreover, varying the parameter set values to change the dynamical characteristics of the response is more restricted in the simple model, whereas the complex model shows greater tunability. These results highlight the importance of the presence of specific network patterns, in addition to the role of parameter values, when we want to characterize oscillatory biochemical systems. </p>","PeriodicalId":22161,"journal":{"name":"Systems and Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11693-015-9173-y","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11693-015-9173-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/6/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Biomolecular networks that present oscillatory behavior are ubiquitous in nature. While some design principles for robust oscillations have been identified, it is not well understood how these oscillations are affected when the kinetic parameters are constantly changing or are not precisely known, as often occurs in cellular environments. Many models of diverse complexity level, for systems such as circadian rhythms, cell cycle or the p53 network, have been proposed. Here we assess the influence of hundreds of different parameter sets on the sensitivities of two configurations of a well-known oscillatory system, the p53 core network. We show that, for both models and all parameter sets, the parameter related to the p53 positive feedback, i.e. self-promotion, is the only one that presents sizeable sensitivities on extrema, periods and delay. Moreover, varying the parameter set values to change the dynamical characteristics of the response is more restricted in the simple model, whereas the complex model shows greater tunability. These results highlight the importance of the presence of specific network patterns, in addition to the role of parameter values, when we want to characterize oscillatory biochemical systems.

Abstract Image

Abstract Image

Abstract Image

参数值对两种p53-Mdm2模型振荡灵敏度的影响。
呈现振荡行为的生物分子网络在自然界中无处不在。虽然已经确定了一些稳健振荡的设计原则,但当动力学参数不断变化或不精确已知时,这些振荡是如何受到影响的,这在细胞环境中经常发生。对于昼夜节律、细胞周期或p53网络等系统,已经提出了许多不同复杂程度的模型。在这里,我们评估了数百种不同的参数集对一个众所周知的振荡系统——p53核心网络的两种配置的灵敏度的影响。我们表明,对于模型和所有参数集,与p53正反馈(即自我提升)相关的参数是唯一对极值、周期和延迟呈现相当大灵敏度的参数。此外,通过改变参数集值来改变响应的动态特性在简单模型中受到更大的限制,而在复杂模型中则表现出更大的可调性。这些结果突出了特定网络模式的存在的重要性,除了参数值的作用,当我们想要表征振荡生化系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信