[Caucasian cryptic species of rodents as models for studying the problem of species and speciation].
Pub Date : 2015-07-01
M I Baskevich, S G Potapov, T A Mironova
{"title":"[Caucasian cryptic species of rodents as models for studying the problem of species and speciation].","authors":"M I Baskevich, S G Potapov, T A Mironova","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The problem of species and speciation is considered using as a model the cryptic species of rodents inhabiting the Caucasus, the mountain chain with prominent altitude environmental gradient and insular pattern of mountain habitats. These circumstances open additional possibilities for the choice of species conception (biological or phylogenetic), exploration of ancestry pathways (sympatric or allopatric speciation) of model cryptic species groups, and testing the 'refuge' hypothesis. As model species, sibling-species Sicista from the group 'caucasica' (a group of unstriped birch mice) and representatives of the vole subspecies Terricola (Microtus, Arvicolinae) were used. Based on the new data on karyology, nucleotide sequences of mitochondrial gene cytb, multivariate statistical analysis of odontologic traits, and biogeography of sibling-species Sicista from the group 'caucasica' and voles from subspecies Terricola (Microtus, Arvicolinae), their evolutionary history is reconstructed and applicable species concepts are examined. For the present sibling-species Sicista from the group 'caucasica' the allopatric dispersion is typical, which agrees with the hypothesis of speciation in refuges. The sympatry of Terricola sibling-species in the Caucasus is considered as being secondary, and their phenotypic likeness--as an adaptation to similar environmental conditions. Affirmed coexistence of sibling-species Microtus (Terricola) majori and Microtus (Terricola) daghestanicus in the Caucasus (without their hybridization) supports the biological conception of species. The existence of Sicista allospecies from the group of Caucasian unstriped birch mice is best conformed to the phylogenetic conception. However, the high level of chromosomal differences between sibling-species and, in particular, between extreme variants of common evolutionary line (Sicista kazbegica, Sicista kluchorica) does not contradict the biological conception of species.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The problem of species and speciation is considered using as a model the cryptic species of rodents inhabiting the Caucasus, the mountain chain with prominent altitude environmental gradient and insular pattern of mountain habitats. These circumstances open additional possibilities for the choice of species conception (biological or phylogenetic), exploration of ancestry pathways (sympatric or allopatric speciation) of model cryptic species groups, and testing the 'refuge' hypothesis. As model species, sibling-species Sicista from the group 'caucasica' (a group of unstriped birch mice) and representatives of the vole subspecies Terricola (Microtus, Arvicolinae) were used. Based on the new data on karyology, nucleotide sequences of mitochondrial gene cytb, multivariate statistical analysis of odontologic traits, and biogeography of sibling-species Sicista from the group 'caucasica' and voles from subspecies Terricola (Microtus, Arvicolinae), their evolutionary history is reconstructed and applicable species concepts are examined. For the present sibling-species Sicista from the group 'caucasica' the allopatric dispersion is typical, which agrees with the hypothesis of speciation in refuges. The sympatry of Terricola sibling-species in the Caucasus is considered as being secondary, and their phenotypic likeness--as an adaptation to similar environmental conditions. Affirmed coexistence of sibling-species Microtus (Terricola) majori and Microtus (Terricola) daghestanicus in the Caucasus (without their hybridization) supports the biological conception of species. The existence of Sicista allospecies from the group of Caucasian unstriped birch mice is best conformed to the phylogenetic conception. However, the high level of chromosomal differences between sibling-species and, in particular, between extreme variants of common evolutionary line (Sicista kazbegica, Sicista kluchorica) does not contradict the biological conception of species.