[On the origin of Yersinia pestis, a causative agent of the plague: A concept of population-genetic macroevolution in transitive environment].
Pub Date : 2015-07-01
V V Suntsov
{"title":"[On the origin of Yersinia pestis, a causative agent of the plague: A concept of population-genetic macroevolution in transitive environment].","authors":"V V Suntsov","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>An ecological scenario is proposed for the origin of causative agent of the plague (the bacterium Yersenia pestis) from the clone of pseudotuberculous microbe of the first serotype Y. pseudotuberculosis O:1b. Disclosed are the conditions of gradual intrusion of psychrophile saprozoonosis ancestor into the blood of the primary host, Mongolian tarbagan marmot Marmota sibirica. As an inductor of speciation acted the Sartan cooling that occurred in the end of late Pleistocene under conditions of arid ultra-continental climate in Central Asia. Soil freezing down to the level of hibernating chambers in marmot burrows initiated the transition of marmot flea, Oropsylla silantiewi, larvae to optional hemophagy on the mucous coat inside the mouth cavity of sleeping marmots. In its turn, this promoted the conditions of mass traumatic intrusion of Y pseudotuberculosis into marmots bloodstream from faecal particles getting in their mouth cavity in course of building up a plug in a burrow for hibernating. In marmot populations, the selection of bacteria underwent under conditions of heterothermy with repeated changes of hibernating marmots body temperature within the range of 5-37 degrees C (torpor-euthermy). During the warm season, when pseudotuberculous microbes are totally eliminated from the bloodstream of healthy marmots with body temperature about 37 degrees C, bacteria could survive in fleas' digestive tract in the form of biofilm developing in proventriculus as a so called blockage. Final isolation between ancestral and daughter species was helped by the development of intrapopulation antagonism related with the beginning of full-scale synthesis of bacteriocin pesticin. Population-genetic processes in the \"marmot-flea\" system have led to a macroevolutionary event, that is, to passage of bacteria in a new ecological niche and adaptive zone that are principally different from those of the ancestor. All the present intraspecies forms of Y. pestis that appeared due to microevolution, have originated with the subspecies Y. pestis tarbagani that has formed in Central Asia during the Sartan cooling.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An ecological scenario is proposed for the origin of causative agent of the plague (the bacterium Yersenia pestis) from the clone of pseudotuberculous microbe of the first serotype Y. pseudotuberculosis O:1b. Disclosed are the conditions of gradual intrusion of psychrophile saprozoonosis ancestor into the blood of the primary host, Mongolian tarbagan marmot Marmota sibirica. As an inductor of speciation acted the Sartan cooling that occurred in the end of late Pleistocene under conditions of arid ultra-continental climate in Central Asia. Soil freezing down to the level of hibernating chambers in marmot burrows initiated the transition of marmot flea, Oropsylla silantiewi, larvae to optional hemophagy on the mucous coat inside the mouth cavity of sleeping marmots. In its turn, this promoted the conditions of mass traumatic intrusion of Y pseudotuberculosis into marmots bloodstream from faecal particles getting in their mouth cavity in course of building up a plug in a burrow for hibernating. In marmot populations, the selection of bacteria underwent under conditions of heterothermy with repeated changes of hibernating marmots body temperature within the range of 5-37 degrees C (torpor-euthermy). During the warm season, when pseudotuberculous microbes are totally eliminated from the bloodstream of healthy marmots with body temperature about 37 degrees C, bacteria could survive in fleas' digestive tract in the form of biofilm developing in proventriculus as a so called blockage. Final isolation between ancestral and daughter species was helped by the development of intrapopulation antagonism related with the beginning of full-scale synthesis of bacteriocin pesticin. Population-genetic processes in the "marmot-flea" system have led to a macroevolutionary event, that is, to passage of bacteria in a new ecological niche and adaptive zone that are principally different from those of the ancestor. All the present intraspecies forms of Y. pestis that appeared due to microevolution, have originated with the subspecies Y. pestis tarbagani that has formed in Central Asia during the Sartan cooling.