Abdollah Dehzangi, Alok Sharma, James Lyons, Kuldip K Paliwal, Abdul Sattar
{"title":"A mixture of physicochemical and evolutionary-based feature extraction approaches for protein fold recognition.","authors":"Abdollah Dehzangi, Alok Sharma, James Lyons, Kuldip K Paliwal, Abdul Sattar","doi":"10.1504/ijdmb.2015.066359","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancement in the pattern recognition field stimulates enormous interest in Protein Fold Recognition (PFR). PFR is considered as a crucial step towards protein structure prediction and drug design. Despite all the recent achievements, the PFR still remains as an unsolved issue in biological science and its prediction accuracy still remains unsatisfactory. Furthermore, the impact of using a wide range of physicochemical-based attributes on the PFR has not been adequately explored. In this study, we propose a novel mixture of physicochemical and evolutionary-based feature extraction methods based on the concepts of segmented distribution and density. We also explore the impact of 55 different physicochemical-based attributes on the PFR. Our results show that by providing more local discriminatory information as well as obtaining benefit from both physicochemical and evolutionary-based features simultaneously, we can enhance the protein fold prediction accuracy up to 5% better than previously reported results found in the literature.</p>","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"11 1","pages":"115-38"},"PeriodicalIF":0.2000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijdmb.2015.066359","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/ijdmb.2015.066359","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 19
Abstract
Recent advancement in the pattern recognition field stimulates enormous interest in Protein Fold Recognition (PFR). PFR is considered as a crucial step towards protein structure prediction and drug design. Despite all the recent achievements, the PFR still remains as an unsolved issue in biological science and its prediction accuracy still remains unsatisfactory. Furthermore, the impact of using a wide range of physicochemical-based attributes on the PFR has not been adequately explored. In this study, we propose a novel mixture of physicochemical and evolutionary-based feature extraction methods based on the concepts of segmented distribution and density. We also explore the impact of 55 different physicochemical-based attributes on the PFR. Our results show that by providing more local discriminatory information as well as obtaining benefit from both physicochemical and evolutionary-based features simultaneously, we can enhance the protein fold prediction accuracy up to 5% better than previously reported results found in the literature.
期刊介绍:
Mining bioinformatics data is an emerging area at the intersection between bioinformatics and data mining. The objective of IJDMB is to facilitate collaboration between data mining researchers and bioinformaticians by presenting cutting edge research topics and methodologies in the area of data mining for bioinformatics. This perspective acknowledges the inter-disciplinary nature of research in data mining and bioinformatics and provides a unified forum for researchers/practitioners/students/policy makers to share the latest research and developments in this fast growing multi-disciplinary research area.