Ernestina Schipani, Laura Mangiavini, Christophe Merceron
{"title":"HIF-1α and growth plate development: what we really know.","authors":"Ernestina Schipani, Laura Mangiavini, Christophe Merceron","doi":"10.1038/bonekey.2015.99","DOIUrl":null,"url":null,"abstract":"<p><p>Adaptation to low oxygen tension or hypoxia is a critical event in development and tissue homeostasis. Studies by us and others have shown that the fetal growth plate is an avascular tissue with a gradient of oxygenation, and the transcription factor hypoxia-inducible factor-1α (HIF-1α) is essential for its development. In this brief review, we will summarize our current understanding of the role of HIF-1α in fetal growth plate development, and we will discuss yet unanswered questions in the field of hypoxia and endochondral bone formation. </p>","PeriodicalId":72441,"journal":{"name":"BoneKEy reports","volume":" ","pages":"730"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/bonekey.2015.99","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BoneKEy reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/bonekey.2015.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Adaptation to low oxygen tension or hypoxia is a critical event in development and tissue homeostasis. Studies by us and others have shown that the fetal growth plate is an avascular tissue with a gradient of oxygenation, and the transcription factor hypoxia-inducible factor-1α (HIF-1α) is essential for its development. In this brief review, we will summarize our current understanding of the role of HIF-1α in fetal growth plate development, and we will discuss yet unanswered questions in the field of hypoxia and endochondral bone formation.