James Y Tung, Brent Stead, William Mann, Ba'Pham, Milos R Popovic
{"title":"Assistive technologies for self-managed pressure ulcer prevention in spinal cord injury: a scoping review.","authors":"James Y Tung, Brent Stead, William Mann, Ba'Pham, Milos R Popovic","doi":"10.1682/JRRD.2014.02.0064","DOIUrl":null,"url":null,"abstract":"<p><p>Pressure ulcers (PUs) in individuals with spinal cord injury (SCI) present a persistent and costly problem. Continuing effort in developing new technologies that support self-managed care is an important prevention strategy. Specifically, the aims of this scoping review are to review the key concepts and factors related to self-managed prevention of PUs in individuals with SCI and appraise the technologies available to assist patients in self-management of PU prevention practices. There is broad consensus that sustaining long-term adherence to prevention regimens is a major concern. Recent literature highlights the interactions between behavioral and physiological risk factors. We identify four technology categories that support self-management: computer-based educational technologies demonstrated improved short-term gains in knowledge (2 studies), interface pressure mapping technologies demonstrated improved adherence to pressure-relief schedules up to 3 mo (5 studies), electrical stimulation confirmed improvements in tissue tolerance after 8 wk of training (3 studies), and telemedicine programs demonstrated improvements in independence and reduced hospital visits over 6 mo (2 studies). Overall, self-management technologies demonstrated low-to-moderate effectiveness in addressing a subset of risk factors. However, the effectiveness of technologies in preventing PUs is limited due to a lack of incidence reporting. In light of the key findings, we recommend developing integrated technologies that address multiple risk factors. </p>","PeriodicalId":50065,"journal":{"name":"Journal of Rehabilitation Research and Development","volume":"52 2","pages":"131-46"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rehabilitation Research and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1682/JRRD.2014.02.0064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Pressure ulcers (PUs) in individuals with spinal cord injury (SCI) present a persistent and costly problem. Continuing effort in developing new technologies that support self-managed care is an important prevention strategy. Specifically, the aims of this scoping review are to review the key concepts and factors related to self-managed prevention of PUs in individuals with SCI and appraise the technologies available to assist patients in self-management of PU prevention practices. There is broad consensus that sustaining long-term adherence to prevention regimens is a major concern. Recent literature highlights the interactions between behavioral and physiological risk factors. We identify four technology categories that support self-management: computer-based educational technologies demonstrated improved short-term gains in knowledge (2 studies), interface pressure mapping technologies demonstrated improved adherence to pressure-relief schedules up to 3 mo (5 studies), electrical stimulation confirmed improvements in tissue tolerance after 8 wk of training (3 studies), and telemedicine programs demonstrated improvements in independence and reduced hospital visits over 6 mo (2 studies). Overall, self-management technologies demonstrated low-to-moderate effectiveness in addressing a subset of risk factors. However, the effectiveness of technologies in preventing PUs is limited due to a lack of incidence reporting. In light of the key findings, we recommend developing integrated technologies that address multiple risk factors.